
Simulations in Statistical Physics
Course for MSc physics students

Janos Török

Department of Theoretical Physics

October 13, 2015

Page 1

Real space numerical renormalization group

I At the critical point the system is self similar (scale-free)
I It does not matter on which scale we are looking at it.

Page 2

Real space numerical renormalization group

I As the system gets larger it converges into a fixed point

Page 3

Numerical renormalization group, percolation

I probability that the cell is spanned:

p′ = R(p) = 2p2(1− p)2 + 4p3(1− p) + p4

I In the critical point p′ = p.
I Three solutions p0 = 0, p1 = 1, and p∗ = 0.6180
I Theoretical value pc = 0.5927
I Larger blocks (only numerically possible) give better estimates

Page 4

Directed percolation

Page 5

Directed percolation

I More complicated than percolation
I 3 exponents (correlation lengths in two directions) ν⊥, ν|| and

(order parameter) β

ρ(∆p, t, L) ∼ b−β/ν⊥ρ(b1/ν⊥∆p, t/bz , L/b),

with z = ν||/ν⊥.

I β/ν|| as on figure
I z in a large sample
I Critical scaling of finite

clusters

Page 6

Directed percolation

I Density versus time

I Length/width versus size
I Clusters are fractal

Page 7

Random numbers
I Why?

I Ensemble average:
〈A〉 =

∑
i

AiP
eq
i

Random initial configurations
I Model: e.g. Monte-Carlo
I Fluctuations
I Sample

I How?

Page 8

Generate random numbers

I We need good randomness:
I Correlations of random numbers appear in the results
I Must be fast
I Long cycle
I Cryptography

Page 9

Random number generators

I True (Physical phenomena):
I Shot noise (circuit)
I Nuclear decay
I Amplification of noise

I Atmospheric noise
(random.org)

I Thermal noise of resistor
I Reverse biased transistor

I Limited speed
I Needed for cryptography

I Pseudo (algorithm):
I Deterministic

I Good for debugging!
I Fast
I Can be made reliable

Page 10

Language provided random numbers

It is good to know what the computer does!
I Algorithm

I Performance
I Precision
I Limit cycle
I Historically(?) a catastrophe

Page 11

Language provided random numbers

It is good to know what the computer does!

Random php rand() on Windows

Page 12

Language provided random numbers

It is good to know what the computer does!
I Algorithm

I Performance
I Precision
I Limit cycle
I Historically a catastrophe

I Seed
I From true random source
I Time
I Manual

I Allows debugging
I Ensures difference

First only uniform random numbers

Page 13

Seed

I From true random source
I Time
I Manual

Random number generator of Python with different seeds:

Page 14

Page 15

Seed
I Ensemble average: Include in the code if possible instead of

restarting it with different seeds!

Page 16

Multiplicative congruential algorithm

I Let rj be an integer number, the next is generated by

rj+1 = (arj + c)mod(m),

I Sometimes only k bits are used
I Values between 0 and m − 1 or 2k − 1
I Three parameters (a, c ,m).
I If m = 2X is fast. Use AND (&) instead of modulo (%).
I Good:

I Historical choice:
a = 75 = 16807, m = 231 − 1 = 2147483647, c = 0

I gcc built-in (k = 31):
a = 1103515245, m = 231 = 2147483648, c = 12345

I Bad:
I RANDU: a = 65539, m = 231 = 2147483648, c = 0

Page 17

Tausworth, Kirkpatrick-Stoll generator

I Fill an array of 256 integers with random numbers

J[k] = J[(k − 250)&255]ˆJ[(k − 103)&255]

I Return J[k], increase k by one

I Can be 64 bit number
I Extremely fast, but short cycles for certain seeds

XOR function
ˆ 1 0
1 0 1
0 1 0

Page 18

Tausworth, Kirkpatrick-Stoll generator corrected by Zipf

The one the lecturer uses
I Fill an array of 256 integers with random numbers

J[k] = J[(k − 250)&255]ˆJ[(k − 103)&255]

Increase k by one

J[k] = J[(k − 30)&255]ˆJ[(k − 127)&255]

I Return J[k], increase k by one
I Extremely fast, reliable also on bit level

General transformation x ∈ [0 : 1[

x = r/(RAND_MAX + 1)

Page 19

Tests

I General: e.g. TESTU01
I Diehard tests:

I Birthday spacings (spacing is exponential)
I Monkey tests (random typewriter problem)
I Parking lot test

I Moments: m =

∫ 1

0

1
n + 1

I Correlation

Cq,q′(t) =

∫ 1

0

∫ 1

0
xqx ′q′

P[x , x ′(t)]dxdx ′ =
1

(q + 1)(q′ + 1)
I Fourier-spectra
I Fill of d dimensional lattice
I Random walks

Red ones are not always fulfilled!
I Certain Multiplicative congruential generators are bad on bit

series distribution, not completely position independent.

Page 20

Bit series distribution
Probability of having k times the same bit

Fit to the tail for different bit positions show
(gcc)

Page 21

Fill of d dimensional lattice

I Generate d random numbers ci ∈ [0, L]

I Set x [c1, c2, . . . , cd] = 1
I The Marsaglia effect is that for all congruential multiplicative

generators there will be unavailable points (on hyperplanes) if
d is large enough.

I For RANDU d = 3

Page 22

Solution for Marsaglia effect

I Instead of d random numbers only 1 (x)
I Divide it int d parts

c_1=x%d, x/=d
c_2=x%d, x/=d
...

I Better to have L = 2k .
I In this case much faster!

General advice: Save time by generating less random numbers

Page 23

Random numbers with different distributions

I Let us have a good random number r ∈ [0, 1].
I The probability density function is P(x)

I The cumulative distribution is

D(x) =

∫ x

−∞
P(x ′)dx ′

I Obviously:
P(x) = D ′(x)

I The numbers D−1(x) will be distributed according to P(x)

I D−1(x) is the inverse function of D(x) not always easy to get!

Page 24

Random numbers with different distributions

Graphical representation

Page 25

Box-Müller method
Gaussian distributed random numbers

P(x) =
1√
2π

e−x2/2

I Generate independent uniform r1, r2 ∈ (0, 1)

I r1, r2 cannot be zero!
I Two independent normally distributed random numbers:

x1 =
√
−2 log r1 cos 2πr2

x2 =
√
−2 log r1 sin 2πr2

I It uses radial symmetry:

P(x , y) =
1√
2π

e−x2/2 1√
2π

e−y2/2 =
1√
2π

e−(x
2+y2)/2

Page 26

Power law distributed random numbers

Let P(y) have uniform distribution in [0, 1]. We generate P(x)
such as

P(x) = Cxn

for x ∈ [x0, x1].

D(x) =

∫ x

x0

P(x ′)dx ′ =
C

n + 1
(
xn+1 − xn+1

0
)

The inverse function is simple:

x =
[(

xn+1
1 − xn+1

0
)
y + xn+1

0
]1/(n+1)

Page 27

Optimization
I General problem of finding the ground state
I Phase-space:
I Arbitrary number of dimensions
I Methods:

I Steepest Descent
I Stimulated Annealing
I Genetic algorithm

Page 28

Gradient based optimization

I Given f (x), with x = {x1, x2, . . . xn}
I Gradient ∇f (x) ≡ g(x) = {∂1f , ∂2f , . . . ∂nf }
I Second order partial derivatives: square symmetric matrix

called the Hessian matrix:

∇2f (x) ≡ H(x) ≡

∂1∂1f . . . ∂1∂nf
...

. . .
...

∂1∂nf . . . ∂n∂nf

Page 29

General Gradient Algorithm

1. Test for convergence
2. Compute a search direction
3. Compute a step length
4. Update x

Page 30

Steepest descent algorithm

1. Start from x0

2. Compute g(xk) ≡ ∇f (xk). If ||g(xk)|| ≤ εg then stop,
otherwise, compute normalized search direction
pk = −g(xk)/||g(xk)||

3. Compute αk such that f (xk + αpk) is minimized
4. New point: xk+1 = xk + αpk

5. Test for |f (xk+1 − f (xk))| ≤ εa + εr |f (xk)| and stop if fulfilled
in two successive iterations, otherwise go to 2.

Page 31

Conjugate Gradient Method

1. Start from x0

2. Compute g(xk) ≡ ∇f (xk). If ||g(xk)|| ≤ εg then stop,
otherwise Go to 5

3. Compute g(xk) ≡ ∇f (xk). If ||g(xk)|| ≤ εg then stop,
otherwise continue

4. Compute the new conjugate gradient direction
pk = −gk + βkpk−1, where

β =

(
||gk ||
||gk−1||

)2

5. Compute αk such that f (xk + αpk) is minimized
6. New point: xk+1 = xk + αpk

7. Test for |f (xk+1 − f (xk))| ≤ εa + εr |f (xk)| and stop if fulfilled
in two successive iterations, otherwise go to 3.

Page 32

Conjugate Gradient Algorithm

Page 33

Modified Newton’s method

Second order method
1. Start from x0

2. Compute g(xk) ≡ ∇f (xk). If ||g(xk)|| ≤ εg then stop,
otherwise, continue

3. Compute H(xk) ≡ ∇2f (xk) and the search direction
pk = −H−1gk

4. Compute αk such that f (xk + αpk) is minimized
5. New point: xk+1 = xk + αpk

6. Go to 2.

Page 34

Metastability

I At first order transitions the correlation length remains finite.
I The mechanism of the first order transition is usually

nucleation, which is related to metastability.
I Examples can be observed at hysteresis or undercooling,

overheating, over-compessing etc.

Page 35

Nucleation

I There is a competition between the bulk free energy of the
droplet and its surface energy

I There is a critical nucleus size above which the transition is
very rapid.

I However, such a critical nucleus has to be created by
spontaneous fluctuations – which takes (sometimes
enormously long) time.

Page 36

Glassy behavior, frustration
I Model glass: spin-glass:

H = −1
2

∑
〈i ,j〉

JijSiSj

I where Jij are random quenched variables with 0 mean (e.g.
±J with probability half)

Rugged energy landscape.

Page 37

