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Real space numerical renormalization group

I At the critical point the system is self similar (scale-free)
I It does not matter on which scale we are looking at it.
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Real space numerical renormalization group

I As the system gets larger it converges into a fixed point
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Numerical renormalization group, percolation

I probability that the cell is spanned:

p′ = R(p) = 2p2(1− p)2 + 4p3(1− p) + p4

I In the critical point p′ = p.
I Three solutions p0 = 0, p1 = 1, and p∗ = 0.6180
I Theoretical value pc = 0.5927
I Larger blocks (only numerically possible) give better estimates
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Directed percolation
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Directed percolation

I More complicated than percolation
I 3 exponents (correlation lengths in two directions) ν⊥, ν|| and

(order parameter) β

ρ(∆p, t, L) ∼ b−β/ν⊥ρ(b1/ν⊥∆p, t/bz , L/b),

with z = ν||/ν⊥.

I β/ν|| as on figure
I z in a large sample
I Critical scaling of finite

clusters
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Directed percolation

I Density versus time

I Length/width versus size
I Clusters are fractal
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Random numbers
I Why?

I Ensemble average:
〈A〉 =

∑
i

AiP
eq
i

Random initial configurations
I Model: e.g. Monte-Carlo
I Fluctuations
I Sample

I How?
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Generate random numbers

I We need good randomness:
I Correlations of random numbers appear in the results
I Must be fast
I Long cycle
I Cryptography
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Random number generators

I True (Physical phenomena):
I Shot noise (circuit)
I Nuclear decay
I Amplification of noise

I Atmospheric noise
(random.org)

I Thermal noise of resistor
I Reverse biased transistor

I Limited speed
I Needed for cryptography

I Pseudo (algorithm):
I Deterministic

I Good for debugging!
I Fast
I Can be made reliable
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Language provided random numbers

It is good to know what the computer does!
I Algorithm

I Performance
I Precision
I Limit cycle
I Historically(?) a catastrophe
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Language provided random numbers

It is good to know what the computer does!

Random php rand() on Windows
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Language provided random numbers

It is good to know what the computer does!
I Algorithm

I Performance
I Precision
I Limit cycle
I Historically a catastrophe

I Seed
I From true random source
I Time
I Manual

I Allows debugging
I Ensures difference

First only uniform random numbers
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Seed

I From true random source
I Time
I Manual

Random number generator of Python with different seeds:
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Seed
I Ensemble average: Include in the code if possible instead of

restarting it with different seeds!
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Multiplicative congruential algorithm

I Let rj be an integer number, the next is generated by

rj+1 = (arj + c)mod(m),

I Sometimes only k bits are used
I Values between 0 and m − 1 or 2k − 1
I Three parameters (a, c ,m).
I If m = 2X is fast. Use AND (&) instead of modulo (%).
I Good:

I Historical choice:
a = 75 = 16807, m = 231 − 1 = 2147483647, c = 0

I gcc built-in (k = 31):
a = 1103515245, m = 231 = 2147483648, c = 12345

I Bad:
I RANDU: a = 65539, m = 231 = 2147483648, c = 0
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Tausworth, Kirkpatrick-Stoll generator

I Fill an array of 256 integers with random numbers

J[k] = J[(k − 250)&255]ˆJ[(k − 103)&255]

I Return J[k], increase k by one

I Can be 64 bit number
I Extremely fast, but short cycles for certain seeds

XOR function
ˆ 1 0
1 0 1
0 1 0
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Tausworth, Kirkpatrick-Stoll generator corrected by Zipf

The one the lecturer uses
I Fill an array of 256 integers with random numbers

J[k] = J[(k − 250)&255]ˆJ[(k − 103)&255]

Increase k by one

J[k] = J[(k − 30)&255]ˆJ[(k − 127)&255]

I Return J[k], increase k by one
I Extremely fast, reliable also on bit level

General transformation x ∈ [0 : 1[

x = r/(RAND_MAX + 1)
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Tests

I General: e.g. TESTU01
I Diehard tests:

I Birthday spacings (spacing is exponential)
I Monkey tests (random typewriter problem)
I Parking lot test

I Moments: m =

∫ 1

0

1
n + 1

I Correlation

Cq,q′(t) =

∫ 1

0

∫ 1

0
xqx ′q′

P[x , x ′(t)]dxdx ′ =
1

(q + 1)(q′ + 1)
I Fourier-spectra
I Fill of d dimensional lattice
I Random walks

Red ones are not always fulfilled!
I Certain Multiplicative congruential generators are bad on bit

series distribution, not completely position independent.
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Bit series distribution
Probability of having k times the same bit

Fit to the tail for different bit positions show
(gcc)
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Fill of d dimensional lattice

I Generate d random numbers ci ∈ [0, L]

I Set x [c1, c2, . . . , cd ] = 1
I The Marsaglia effect is that for all congruential multiplicative

generators there will be unavailable points (on hyperplanes) if
d is large enough.

I For RANDU d = 3
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Solution for Marsaglia effect

I Instead of d random numbers only 1 (x)
I Divide it int d parts

c_1=x%d, x/=d
c_2=x%d, x/=d
...

I Better to have L = 2k .
I In this case much faster!

General advice: Save time by generating less random numbers
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Random numbers with different distributions

I Let us have a good random number r ∈ [0, 1].
I The probability density function is P(x)

I The cumulative distribution is

D(x) =

∫ x

−∞
P(x ′)dx ′

I Obviously:
P(x) = D ′(x)

I The numbers D−1(x) will be distributed according to P(x)

I D−1(x) is the inverse function of D(x) not always easy to get!
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Random numbers with different distributions

Graphical representation
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Box-Müller method
Gaussian distributed random numbers

P(x) =
1√
2π

e−x2/2

I Generate independent uniform r1, r2 ∈ (0, 1)

I r1, r2 cannot be zero!
I Two independent normally distributed random numbers:

x1 =
√
−2 log r1 cos 2πr2

x2 =
√
−2 log r1 sin 2πr2

I It uses radial symmetry:

P(x , y) =
1√
2π

e−x2/2 1√
2π

e−y2/2 =
1√
2π

e−(x
2+y2)/2

Page 26



Power law distributed random numbers

Let P(y) have uniform distribution in [0, 1]. We generate P(x)
such as

P(x) = Cxn

for x ∈ [x0, x1].

D(x) =

∫ x

x0

P(x ′)dx ′ =
C

n + 1
(
xn+1 − xn+1

0
)

The inverse function is simple:

x =
[(

xn+1
1 − xn+1

0
)
y + xn+1

0
]1/(n+1)
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Optimization
I General problem of finding the ground state
I Phase-space:
I Arbitrary number of dimensions
I Methods:

I Steepest Descent
I Stimulated Annealing
I Genetic algorithm
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Gradient based optimization

I Given f (x), with x = {x1, x2, . . . xn}
I Gradient ∇f (x) ≡ g(x) = {∂1f , ∂2f , . . . ∂nf }
I Second order partial derivatives: square symmetric matrix

called the Hessian matrix:

∇2f (x) ≡ H(x) ≡

∂1∂1f . . . ∂1∂nf
...

. . .
...

∂1∂nf . . . ∂n∂nf
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General Gradient Algorithm

1. Test for convergence
2. Compute a search direction
3. Compute a step length
4. Update x
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Steepest descent algorithm

1. Start from x0

2. Compute g(xk) ≡ ∇f (xk). If ||g(xk)|| ≤ εg then stop,
otherwise, compute normalized search direction
pk = −g(xk)/||g(xk)||

3. Compute αk such that f (xk + αpk) is minimized
4. New point: xk+1 = xk + αpk

5. Test for |f (xk+1 − f (xk))| ≤ εa + εr |f (xk)| and stop if fulfilled
in two successive iterations, otherwise go to 2.
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Conjugate Gradient Method

1. Start from x0

2. Compute g(xk) ≡ ∇f (xk). If ||g(xk)|| ≤ εg then stop,
otherwise Go to 5

3. Compute g(xk) ≡ ∇f (xk). If ||g(xk)|| ≤ εg then stop,
otherwise continue

4. Compute the new conjugate gradient direction
pk = −gk + βkpk−1, where

β =

(
||gk ||
||gk−1||

)2

5. Compute αk such that f (xk + αpk) is minimized
6. New point: xk+1 = xk + αpk

7. Test for |f (xk+1 − f (xk))| ≤ εa + εr |f (xk)| and stop if fulfilled
in two successive iterations, otherwise go to 3.
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Conjugate Gradient Algorithm
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Modified Newton’s method

Second order method
1. Start from x0

2. Compute g(xk) ≡ ∇f (xk). If ||g(xk)|| ≤ εg then stop,
otherwise, continue

3. Compute H(xk) ≡ ∇2f (xk) and the search direction
pk = −H−1gk

4. Compute αk such that f (xk + αpk) is minimized
5. New point: xk+1 = xk + αpk

6. Go to 2.
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Metastability

I At first order transitions the correlation length remains finite.
I The mechanism of the first order transition is usually

nucleation, which is related to metastability.
I Examples can be observed at hysteresis or undercooling,

overheating, over-compessing etc.
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Nucleation

I There is a competition between the bulk free energy of the
droplet and its surface energy

I There is a critical nucleus size above which the transition is
very rapid.

I However, such a critical nucleus has to be created by
spontaneous fluctuations – which takes (sometimes
enormously long) time.
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Glassy behavior, frustration
I Model glass: spin-glass:

H = −1
2

∑
〈i ,j〉

JijSiSj

I where Jij are random quenched variables with 0 mean (e.g.
±J with probability half)

Rugged energy landscape.
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