Simulations in Statistical Physics
 Course for MSc physics students

Janos Török
Department of Theoretical Physics

October 13, 2015

Page 1

Real space numerical renormalization group

- At the critical point the system is self similar (scale-free)
- It does not matter on which scale we are looking at it.

$L=4 \quad p=0.7$

Real space numerical renormalization group

- As the system gets larger it converges into a fixed point

$$
\lim _{n \rightarrow \infty} R_{n}(p)= \begin{cases}0 & \text { for } 0 \leqslant p<p_{c} \\ c & \text { for } p=p_{c} \\ 1 & \text { for } p_{c}<p \leqslant 1\end{cases}
$$

Page 3

Numerical renormalization group, percolation

- probability that the cell is spanned:

$$
p^{\prime}=R(p)=2 p^{2}(1-p)^{2}+4 p^{3}(1-p)+p^{4}
$$

- In the critical point $p^{\prime}=p$.
- Three solutions $p_{0}=0, p_{1}=1$, and $p_{*}=0.6180$
- Theoretical value $p_{c}=0.5927$
- Larger blocks (only numerically possible) give better estimates

Directed percolation

 Page 5

Directed percolation

- More complicated than percolation
- 3 exponents (correlation lengths in two directions) $\nu_{\perp}, \nu_{\| \mid}$and (order parameter) β

$$
\rho(\Delta p, t, L) \sim b^{-\beta / \nu_{\perp}} \rho\left(b^{1 / \nu_{\perp}} \Delta p, t / b^{z}, L / b\right)
$$

with $z=\nu_{\| \mid} / \nu_{\perp}$.

- $\beta / \nu_{\| \mid}$as on figure
- z in a large sample
- Critical scaling of finite clusters

Directed percolation

- Density versus time

- Length/width versus size
- Clusters are fractal

Page 7

Random numbers

- Why?
- Ensemble average:

$$
\langle A\rangle=\sum_{i} A_{i} P_{i}^{\mathrm{eq}}
$$

Random initial configurations

- Model: e.g. Monte-Carlo
- Fluctuations
- Sample
- How?

Generate random numbers

- We need good randomness:
- Correlations of random numbers appear in the results
- Must be fast
- Long cycle
- Cryptography

Random number generators

- True (Physical phenomena):
- Shot noise (circuit)
- Nuclear decay
- Amplification of noise
- Atmospheric noise (random.org)
- Thermal noise of resistor
- Reverse biased transistor
- Limited speed
- Needed for cryptography
- Pseudo (algorithm):

- Deterministic
- Good for debugging!
- Fast
- Can be made reliable

Language provided random numbers

It is good to know what the computer does!

- Algorithm
- Performance
- Precision
- Limit cycle
- Historically(?) a catastrophe

DILBERT By Scott Admas

Page 11

Language provided random numbers

It is good to know what the computer does!

Random

php rand() on Windows

Language provided random numbers

It is good to know what the computer does!

- Algorithm
- Performance
- Precision
- Limit cycle
- Historically a catastrophe
- Seed
- From true random source
- Time
- Manual
- Allows debugging
- Ensures difference

First only uniform random numbers

Page 13

Seed

- From true random source
- Time
- Manual

Random number generator of Python with different seeds:

System.Random
0 th number of seed $0 . . . n$

Linear function i* 19969 / 207 numbers 0...n

Page 14

System.Random

Sequence of 65536 random valuea.

System.Random
numbers 0 ...n of seed 0

Page 15

System.Random
0th number of seed 0...n

Sequence of 65536 random valuea

System.Random
0th number of seed $0 \ldots n$

Plot of 500000 random coordinates.

Linear function i* 19969/207 numbers 0...n

Sequence of 65536 random values.

Linear function i* 19969/207
numbers 0...n

Seed

- Ensemble average: Include in the code if possible instead of restarting it with different seeds!

System.Random
 0th number of seed 0...n

Sequence of 65536 random values.

System.Random

100th number of seed 0...n

Sequence of 65536 random values.

Page 16

Multiplicative congruential algorithm

- Let r_{j} be an integer number, the next is generated by

$$
r_{j+1}=\left(a r_{j}+c\right) \bmod (m)
$$

- Sometimes only k bits are used
- Values between 0 and $m-1$ or $2^{k}-1$
- Three parameters (a, c, m).
- If $m=2^{X}$ is fast. Use AND (\&) instead of modulo (\%).
- Good:
- Historical choice:

$$
a=7^{5}=16807, m=2^{31}-1=2147483647, c=0
$$

- gcc built-in ($k=31$):

$$
a=1103515245, m=2^{31}=2147483648, c=12345
$$

- Bad:
- RANDU: $a=65539, m=2^{31}=2147483648, c=0$

Tausworth, Kirkpatrick-Stoll generator

- Fill an array of 256 integers with random numbers

$$
J[k]=J[(k-250) \& 255]^{\wedge} J[(k-103) \& 255]
$$

- Return $J[k]$, increase k by one
- Can be 64 bit number
- Extremely fast, but short cycles for certain seeds

XOR function | \wedge | 1 | 0 |
| :---: | :---: | :---: |
| | 1 | 0 | 1

Page 18

Tausworth, Kirkpatrick-Stoll generator corrected by Zipf

The one the lecturer uses

- Fill an array of 256 integers with random numbers

$$
J[k]=J[(k-250) \& 255]^{\wedge} J[(k-103) \& 255]
$$

Increase k by one

$$
J[k]=J[(k-30) \& 255]^{\wedge} J[(k-127) \& 255]
$$

- Return $J[k]$, increase k by one
- Extremely fast, reliable also on bit level

General transformation $x \in[0: 1[$

$$
x=r /\left(R A N D _M A X+1\right)
$$

Page 19

Tests

- General: e.g. TESTU01
- Diehard tests:
- Birthday spacings (spacing is exponential)
- Monkey tests (random typewriter problem)
- Parking lot test
- Moments: $m=\int_{0}^{1} \frac{1}{n+1}$
- Correlation

$$
C_{q, q^{\prime}}(t)=\int_{0}^{1} \int_{0}^{1} x^{q} x^{\prime q^{\prime}} P\left[x, x^{\prime}(t)\right] d x d x^{\prime}=\frac{1}{(q+1)\left(q^{\prime}+1\right)}
$$

- Fourier-spectra
- Fill of d dimensional lattice
- Random walks

Red ones are not always fulfilled!

- Certain Multiplicative congruential generators are bad on bit series distribution, not completely position independent.

Bit series distribution

Probability of having k times the same bit

Fit to the tail for different bit positions show
(gcc)

Fill of d dimensional lattice

- Generate d random numbers $c_{i} \in[0, L]$
- Set $x\left[c_{1}, c_{2}, \ldots, c_{d}\right]=1$
- The Marsaglia effect is that for all congruential multiplicative generators there will be unavailable points (on hyperplanes) if d is large enough.
- For RANDU $d=3$

Solution for Marsaglia effect

- Instead of d random numbers only $1(x)$
- Divide it int d parts
c_1=x\% $\mathrm{d}, \mathrm{x} /=\mathrm{d}$
c_2=x\%d, $x /=d$
- Better to have $L=2^{k}$.
- In this case much faster!

General advice: Save time by generating less random numbers

Random numbers with different distributions

- Let us have a good random number $r \in[0,1]$.
- The probability density function is $P(x)$
- The cumulative distribution is

$$
D(x)=\int_{-\infty}^{x} P\left(x^{\prime}\right) d x^{\prime}
$$

- Obviously:

$$
P(x)=D^{\prime}(x)
$$

- The numbers $D^{-1}(x)$ will be distributed according to $P(x)$
- $D^{-1}(x)$ is the inverse function of $D(x)$ not always easy to get!

Random numbers with different distributions

Graphical representation

Page 25

Box-Müller method

Gaussian distributed random numbers

$$
P(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}
$$

- Generate independent uniform $r_{1}, r_{2} \in(0,1)$
- r_{1}, r_{2} cannot be zero!
- Two independent normally distributed random numbers:

$$
\begin{aligned}
& x_{1}=\sqrt{-2 \log r_{1}} \cos 2 \pi r_{2} \\
& x_{2}=\sqrt{-2 \log r_{1}} \sin 2 \pi r_{2}
\end{aligned}
$$

- It uses radial symmetry:

$$
P(x, y)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} \frac{1}{\sqrt{2 \pi}} e^{-y^{2} / 2}=\frac{1}{\sqrt{2 \pi}} e^{-\left(x^{2}+y^{2}\right) / 2}
$$

Power law distributed random numbers

Let $P(y)$ have uniform distribution in $[0,1]$. We generate $P(x)$ such as

$$
P(x)=C x^{n}
$$

for $x \in\left[x_{0}, x_{1}\right]$.

$$
D(x)=\int_{x_{0}}^{x} P\left(x^{\prime}\right) d x^{\prime}=\frac{C}{n+1}\left(x^{n+1}-x_{0}^{n+1}\right)
$$

The inverse function is simple:

$$
x=\left[\left(x_{1}^{n+1}-x_{0}^{n+1}\right) y+x_{0}^{n+1}\right]^{1 /(n+1)}
$$

Optimization

- General problem of finding the ground state
- Phase-space:
- Arbitrary number of dimensions
- Methods:
- Steepest Descent
- Stimulated Annealing
- Genetic algorithm

Page 28

Gradient based optimization

- Given $f(\mathbf{x})$, with $\mathbf{x}=\left\{x_{1}, x_{2}, \ldots x_{n}\right\}$
- Gradient $\nabla f(\mathbf{x}) \equiv \mathbf{g}(\mathbf{x})=\left\{\partial_{1} f, \partial_{2} f, \ldots \partial_{n} f\right\}$
- Second order partial derivatives: square symmetric matrix called the Hessian matrix:

$$
\nabla^{2} f(\mathbf{x}) \equiv H(\mathbf{x}) \equiv\left(\begin{array}{ccc}
\partial_{1} \partial_{1} f & \ldots & \partial_{1} \partial_{n} f \\
\vdots & \ddots & \vdots \\
\partial_{1} \partial_{n} f & \ldots & \partial_{n} \partial_{n} f
\end{array}\right)
$$

General Gradient Algorithm

1. Test for convergence
2. Compute a search direction
3. Compute a step length
4. Update x

Page 30

Steepest descent algorithm

1. Start from x_{0}
2. Compute $\mathbf{g}\left(\mathbf{x}_{k}\right) \equiv \nabla f\left(\mathbf{x}_{k}\right)$. If $\left\|\mathbf{g}\left(\mathbf{x}_{k}\right)\right\| \leq \varepsilon_{g}$ then stop, otherwise, compute normalized search direction $\mathbf{p}_{k}=-\mathbf{g}\left(\mathbf{x}_{k}\right) /\left\|\mathbf{g}\left(\mathbf{x}_{k}\right)\right\|$
3. Compute α_{k} such that $f\left(\mathbf{x}_{k}+\alpha \mathbf{p}_{k}\right)$ is minimized
4. New point: $\mathbf{x}_{k+1}=\mathbf{x}_{k}+\alpha \mathbf{p}_{k}$
5. Test for $\left|f\left(\mathbf{x}_{k+1}-f\left(\mathbf{x}_{k}\right)\right)\right| \leq \varepsilon_{a}+\varepsilon_{r}\left|f\left(\mathbf{x}_{k}\right)\right|$ and stop if fulfilled in two successive iterations, otherwise go to 2 .

Page 31

Conjugate Gradient Method

1. Start from x_{0}
2. Compute $\mathbf{g}\left(\mathbf{x}_{k}\right) \equiv \nabla f\left(\mathbf{x}_{k}\right)$. If $\left\|\mathbf{g}\left(\mathbf{x}_{k}\right)\right\| \leq \varepsilon_{g}$ then stop, otherwise Go to 5
3. Compute $\mathbf{g}\left(\mathbf{x}_{k}\right) \equiv \nabla f\left(\mathbf{x}_{k}\right)$. If $\left\|\mathbf{g}\left(\mathbf{x}_{k}\right)\right\| \leq \varepsilon_{g}$ then stop, otherwise continue
4. Compute the new conjugate gradient direction $\mathbf{p}_{k}=-\mathbf{g}_{k}+\beta_{k} \mathbf{p}_{k-1}$, where

$$
\beta=\left(\frac{\left\|\mathbf{g}_{k}\right\|}{\left\|\mathbf{g}_{k-1}\right\|}\right)^{2}
$$

5. Compute α_{k} such that $f\left(\mathbf{x}_{k}+\alpha \mathbf{p}_{k}\right)$ is minimized
6. New point: $\mathbf{x}_{k+1}=\mathbf{x}_{k}+\alpha \mathbf{p}_{k}$
7. Test for $\left|f\left(\mathbf{x}_{k+1}-f\left(\mathbf{x}_{k}\right)\right)\right| \leq \varepsilon_{a}+\varepsilon_{r}\left|f\left(\mathbf{x}_{k}\right)\right|$ and stop if fulfilled in two successive iterations, otherwise go to 3 .

Conjugate Gradient Algorithm

Page 33

Modified Newton's method

Second order method

1. Start from x_{0}
2. Compute $\mathbf{g}\left(\mathbf{x}_{k}\right) \equiv \nabla f\left(\mathbf{x}_{k}\right)$. If $\left\|\mathbf{g}\left(\mathbf{x}_{k}\right)\right\| \leq \varepsilon_{g}$ then stop, otherwise, continue
3. Compute $H\left(x_{k}\right) \equiv \nabla^{2} f\left(\mathrm{x}_{k}\right)$ and the search direction $\mathbf{p}_{k}=-H^{-1} \mathbf{g}_{k}$
4. Compute α_{k} such that $f\left(\mathbf{x}_{k}+\alpha \mathbf{p}_{k}\right)$ is minimized
5. New point: $\mathbf{x}_{k+1}=\mathbf{x}_{k}+\alpha \mathbf{p}_{k}$
6. Go to 2.

Metastability

- At first order transitions the correlation length remains finite.
- The mechanism of the first order transition is usually nucleation, which is related to metastability.
- Examples can be observed at hysteresis or undercooling, overheating, over-compessing etc.

Nucleation

- There is a competition between the bulk free energy of the droplet and its surface energy
- There is a critical nucleus size above which the transition is very rapid.
- However, such a critical nucleus has to be created by spontaneous fluctuations - which takes (sometimes enormously long) time.

Glassy behavior, frustration

- Model glass: spin-glass:

$$
H=-\frac{1}{2} \sum_{\langle i, j\rangle} J_{i j} S_{i} S_{j}
$$

- where $J_{i j}$ are random quenched variables with 0 mean (e.g. $\pm J$ with probability half)

Rugged energy landscape.

