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Recapitulation

e Earlier: mono-energetic carriers

e Thermal noise due to equilibrium fluctuations of occupation
numbers in reservoirs:
OI)TN /g = Tip{f(1 - )+ H(1 - A)}

o Shot noise due to QM scattering processes:
(612)N /1§ = R Tro(f — h)?

@ Now: Electrons with continuous E spectrum, one-dimensional
leads connecting N, reservoirs to mesoscopic sample
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Current correlator

The current correlator

Current auto- (o = 3) and cross- (« # ) correlators

Pos(te, t2) = % (Al (8)AT(t2) + Als(82) A (1)

o if t; = tp and a = f3, then Pyo(t1,t1) = <A7§) is the mean
square fluctuation of current in lead «

e Divergent in systems with continuous unbounded spectrum
= Fourier-transform, measurement with Aw window
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The current correlator

In frequency domain
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o Paﬁ(ﬁ, t2) = Paﬁ(tl = t2) = Pag(t) =
0 Pyp(wi,wz) = 2md(w1 + w2)Pas(wi) (to be proven later!)

o Pos(w) = [ dte™tP,5(t) is the spectral noise power

o Measured current fluctuation (67,) = ffgsz dwPaa(w)

N
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The current correlator

Weak dependence on w of SNP

° 'Pag(w) ~ Pag(O)
Aw

51,67 72
0 ! AVB> = Pap(0) and % = Paa(0), where Av = 2«
@ To be compared with earlier results for thermal and shot noise

of current (with two leads): (5,2(717 = kg(T1 + T2)G and

(Sh)
M — [eVG|(1 — Ti»)
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CC in Freq. domain

Structure of the current correlator in the frequency domain

Correlator

N —

Pog(wi,wr) =

where Al (w) = Ty(w) — (Iy(w))
We've learnt earlier, that ...

la(t) = § [ dEAE'e S BL(EYBa(E) - SL(E)a(E))

SO.

—e/ JE{BL(E)ba(E + Fw) — 3L(E)3u(E + )}
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CC in Freq. domain

Structure of the current correlator in the frequency domain

We separate 1, into a scattered ?C(f”t) = efooo dElA),E(E)Ba(E + fw)
and an incident ™ = —e X dEaL(E)aa(E + fw) current part,
then N

Paplwr,w2) = > P (w1, w2)

i.j=in,out

where

«

i 1/ i N i ~i
PUD (w1, w2) = 5 (AT (1) AT (w2) + AT (w2) AT 1))
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CC in Freq. domain

Correlator for incoming currents

Jg/g ln)(E172, w1,2) + Jéior:’in)(Ez,l , w271)

ng’in)(wl,W2 =e / dE{dE>

2
where:
S By w1 0) =
({aL(E1)3a(Er + Puwr) — ( 8L(E1)3a(Ex + Fu))}x
{8](E2)a5(Ea + Fuwn) — ( 3(E2)ap(Ex + hu))})
From which:

Jgg,in)(E1,2,w1,2) = <§L(E1)§,3(E2 + hw2)> < 3a(E1 + Fuwi)d (E2)>
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CC in Freq. domain

Correlator for incoming currents

Assuming uncorrelated reservoirs

<§£(E1)§5(E2 + EUJ2)> = 5a55(E1 —E — ﬁwz)fa(El)

< 3a(Er + ﬁwl)sg(52)> = 5ag0(Ey + fwy — E2){1 — fu(Ey + huwr)}
we get uncorrelated incident currents
PU (wr,w2) = 2m8(w1 + w2) P (1)
(in,in) e? [
P ) =0y [ dEiFoalBr 1 + )
0

Fas(E.E) = 3 (f(EYL— F5(EN] + (E1L ~ £u(E)])
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CC in Freq. domain

Correlator for incoming and outgoing currents

Basically the same calculation, only for outgoing operators, we use
7 N, a N N, A
bi(E) =1, S5 (E)al(E) and bs(E) = Y1) Sp,(E)3,(E)

This way, we get
(m out) e? [
P (w1) = h/ dE; Foo(Eq, E1+hwl)Sga(E1+hwl)55a(E1)
0
and
(out in) _ e [ *
P ( 1) =T dElFﬁg(El, E1+EW1)SQB(E1)SO[5(E1+T7W1)
0

Correlations due to scattering!
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CC in Freq. domain

Correlator for outgoing currents

Now there are only outgoing operators = Two times as many
scattering matrix components

ut,ou 62 o AlagL
P(i% t,o t)(w1) = h/o dE; ZZ F75(E1, Ei + T)wl)x
v=1 =1
Sar(E1)Spy(E1)Sas(Er + hwn)Sgs(Er + Fwn)

@ Non-local dependence on all scattering amplitudes (phase
coherent system)
@ Frequency dependence of noise determined by internal and
external factors:
o Internal: energy dependence of scattering amplitudes
o External: chemical potential, temperature of reservoirs (via
Fermi-functions)
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E independent scattering

Energy independent scattering approximation

@ Suppose eV, 3 = 1o — pg and T, = Tq for Va reservoirs

o |eV,5|, kg To, hw < o very small excitations compared to
Fermi-energy

@ Suppose also little energy dependence of S,z around po =
Saﬁ(E) ~ SQB(E + ﬁw) ~ 504,6’(#0)

Energy integration only for E-dependent F,3

eV + hwcth eV + hw
2 2kg To

/ dEFo5(E, E + hw) =
0

Spectral noise power expression simplifies. . .
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E independent scattering

Energy independent scattering - Two leads case

2 h
Pi1(w) = eh{ﬁwcth <w> T122 + R11 T12X

eV + hw h eV + hw +eV—T7w h eV — hw
2 "\ kg To 2 M\ 2kgTo

where V = Vip = — Va1, Tio = [S12(p0)[?, Rux = [S11(p0)]? and
P12 = P21 = —P22 = —P11 defines all correlations,
G = (ez/h)Tlg, | = VG

2kg ToG, kgTp > |eV|, hw, Thermal noise
Pui(w) = < |el|Ru1, |eV|> kg Ty, hw, Shot noise
%|w[T12, hw > |eV|, kg Ty, Quantum noise
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w = 0 noise power

Low frequency measurements, Noise power

@ Measurement with low frequencies = fluctuation due to
Poa(w = 0), the noise power

e Form of F,z simplifies, unitarity of S
Th Sh
© Pas(0) = Py (0) + P3(0)

(Thy _

~Faa(E, E)|Spal(E)* = Fas(E, E) |Sap(E)?

N,
Faa(E, E) +ZF’Y’Y|504’Y(E)| ]

y=1

@ Vanishes at T = 0, thermal noise power
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w = 0 noise power

Low frequency measurements, Noise power

N, HE
é%h) h/ dEZZ (E)° .,

v=146=1
X Sary(E)Sp1(E)Sas(E)S55(E)

@ Vanishes at zero current through the system, Shot noise power
@ Both depends on bias and temperature

o Thermal (equilibrium) noise power: Same dependence on S as
G < Fluctuation-dissipation theorem

@ Shot (non-equilibrium) noise power: more complicated
dependence on matrix elements = measurement tells more
about the system
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w = 0 noise power

Properties of the noise power

@ Noise power conservation law

N, N,
> P =0=3"PO(0)
a=1 B=1

@ for both incoming and outgoing indices and for
i = Thermal, Shot or Total

o Due to unitarity of S, to particle conservation

o Correlators are not independent at zero frequency = some
measured, others can be calculated
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w = 0 noise power

Properties of the noise power

Sign rule for noise power (True to Th and Sh separately also)
Paa(0) >0
Pap(0) <0, a # B

Auto-correlator positiveness is evident, mean square of a real
quantity

Cross-correlator negative sign comes from indivisible electrons
(one incident electron is scattered to only one lead)

negativity is also due to Pauli-principle: electrons with the

same energy (spinless state) can only pass in the scattering
channels one-by-one
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w = 0 noise power

Example: Scatterer with N, = 2 leads

'P(Th) 'P(Th) 'P(Th) ’Pl(;_h) = ’P(Th)

P(Sh) ,P(Sh) 1(5"7) — _Pl(gh) — P(Sh)
where
2kg [ OR(E) _ Oh(E)
(Thy _ € KB I St A Sl SN A S
P P | dE( T1 5F T 5F > T12(E)
Psh) — / JE [£,(E) — H(E)]? Tya(E)Ruy(E)

Energy dependence of transmission coefficients determines strongly
the V and T dependence of noise = former results as special cases



Fano factor
°

Fano factor

Fano-factor, measure of correlation between carriers

@ The Fano-factor: F = 79‘((75”[)

For statistically independent carriers F = 1

Simplest case: Tio = const, |eV[> kg T, PN = |el|Ri1 (o)
=F=1-Tn<1

If Ti1o0 — 0, then F~1 = as G Ti> in case of small
conductance, uncorrelated carriers carry the current

Correlations reduce Fano-factor due to Pauli-exclusion (passing
one-by-one)



Thank you for your
attention!
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