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Motivation

The non-stationary scatterer can change an energy of incident electrons
We will compare two method for solving of a non-stationary problem.
The first method is the perturbation theory with weak potential

The second one, the Floguet theorem is applied for periodic in time potentials
with arbitrary strength

We will define the Floguet scattering matrix what decribe energy change, and
examine some of its properties.



Schrodinger equations with periodic in time

potential
oY(t,
The Schrédinger equation: ih (gt ) = H(t,P)Y(,7)
Where the Hamiltonian: H(t, 7 = Hy(® + V(7P
We suppose that: Ho@A v (P) = E .7

iEnt

Wu(t,7) = e 1 ¢, (7)

Solving by two method

/\

Perturbation theory Floquet theorem




Perturbation theory

Let the time-dependent potential is small: V' (¢,7) — 0
We are looking for the solution as
(7 = ant) Yult, 7)
n

Substituting to Schrodinger equation:

DN ) D) V6. Wl

Multiply both parts of this equation with ‘P';(#, 7) and integrate over space. Using the

orthogonality of the eigenfunctions of the Hamiltonian,

/ &1 YD) Yn(P) = S

This way we get an equation for the coefficients ay:

dak(z)

Z VMI(Z) an(z)




Perturbation theory

o dak(t)

Z an(t) an(r)

Where:

V) = [ @rai Vi)

We will use an upper index (m) to show an initial state

a™0) =1,
Yot =0,7) =¥,(t=0,7) =
a™(0)=0, n#m

a™() =1+a"V(),

a™() =0+a™ (@), n+m



Perturbation theory

am(t) =1+am™" ),
a™(t) =0+a"™V(), n+tm

Substituting previous equations into ‘Y(z,7) = Z a,(t)'¥,(¢,7) and keeping only linear
terms in V we find: G

daiﬂ?, 1)(t)
dt

ih = Vim(?)

This equation can be integrated out:
t

a""(1) = —% / dt’ Vim(t')

0

Ia;(;")(l‘)l2 defines a probability to observe a particle in the state ‘i (, 7) with energy E,
at time t. Note at initial time t = 0 the particle was in the state with energy E_..



Perturbation theory

Example
Let the potential periodoic in time:
V(t,7) = U@t) R(F)
Where
U(t) = 2U cos(€2y?)

We can solve the previous integral:

e‘:(wkm_QO)E — 1 e‘f(wﬁ?}z"'ﬂ(})t — 1)

(m,1)
t) = —URm -
a0 =~UR ( W(wim — Qo) Mg + £2p)

Where:

Rin = de"'W;(?)R(?)%(?) Nwim = Ex— Ep

The perturbation theory is correct if the absolute value of agﬁli(.t) Is small compared to

unity:
Vkm Uka

~ <1
h(a)km + Qo) h(cukm + Qo)




Perturbation theory

Example

Substituting to the previous equations,

lP(m)(t 7 = e—f%ﬂt Zw ) {6 UR,,, (e—fﬂot _ e_gwmnf) UR,,, (efQUr _ e_f‘”f”“!) }
’ N n nm — —

h(wnm - QO) h(wnm + QO)



Floguet theorem

Vkm Uka

. : : ~ <1
The perturbation theory: (@i = Qo) T + Qo)
» Floquet functions method: No restrictions! We can use any periodic in time
potential.

Floquet theorem overcomes the restrictions and allows to consider an arbitrary but periodic
in time potential

According to this theorem:

(7)) = e Te(t,7)
H(t,7)=H({t+ 7,7 =

o(t,7) = ¢t +7,7)




Floguet theorem

The outline of the proof of this theorem:

L oY@+ T, P
ih

Y = Ht+T,AY@+7T,7) = HtL,AHY(+T,7

The two general solutions have to be proportional each other:

Y+ T, 7)=CY(t,7)

Since the wave function is normalized:

/ Lr¥, A = 1

/ Er¥(t + T, P))F = |C) / LPri¥Yt, 7P = 1
We find:

CP=1 = C=¢™



Floguet theorem

Let us consider these equation below:

(1, 7) = e 7't 7)

$(1,7) = ¢p(t + T, 7)
Where E = ha/T

With these equation we can write:
Y+ T)= e 7D+ T) = e {7 T'p(0)} = e V(1)

This is what we want to see, so the The Floquet theorem has proven



Floguet theorem

Next we expand a periodic in time function ¢(z, 7) into the Fourier series,

p(t,7) = Y ey, (P)

g=—c0

T
dt .
Wq(a:/?tetqgotéﬁ(f»?)

0

Where Qq = 27r/7T. Then the Floquet wave function becomes,

oo

LP(I, }—}) — e—f%! Z e—fqgotlpq(’;)

q:—OO



Floguet theorem

Example

We consider the Schrodinger equation with the same potential as in the previous example:
oY(t, r
ih% { Ho + 2U cos(Qof) } (1, 7)
The solution:

“P(l‘ ?7)) _ 0 z‘{ﬁ:+m sm(ﬁgz)}'ﬁE(}_})!

where we use the stationary problem’s solution:

Hy ye(7) = EYg(7)

Next we use the following Fourier series:

o

piasin(Qol) _ Z e_‘.qﬂ”uq(a’)

g:—oo
We get the next equation, what is reallay a Floquet wave function with (7)) = J,2U/hQ)£(7)

oo

U
PP = e )y e, (m ) ()
0

q:—OO



Floguet theorem

Example

Let the amplitude is small:
U/(h€))) < 1

We expand the Bessel functions into the Tailor series in powers of a small
Parameter a = 2U/(h€))

Jo(@)~ 1-a?/4, Ja(@=~=xa/2, Juy~=za", |n>1

Then up to linear in U terms the solution becomes,

nQ) hQ)

5 U —iQt U iQpt
W(t,7) ~ e TYg(i) {1 = : }

This equation is exactly what we get by perturbation theory with Rum = 6um and ¥m(7) = Y e(7)



Floguet scattering matrix

The main difference of a dynamic scatterer compared to a stationary one is that it can
change an energy of incident electrons.

The parameters of a scatterer vary periodically in time

It is convenient to choose an energy E of an incident electron as the Floguet energy.

The scattering matrix dependent on two energies, incident and scattered. It is referred to as
the Floquet scattering matrix S . . The element S Faop (Ey, E) describes a process when an

electron with energy E incident from the lead f is scattered into the lead o and its energy is
changedto E, = E + nhQ



Floguet scattering matrix
Unitarity

Since the particle flow is conserved at scattering, the Floquet scattering matrix is unitary:

N,
>N Stap By En) Sy (En s E) = 6000y

n a=l1

N,

Z ZSF-JGB (Em ’ E”)S;’,aﬁ (E ’ En) = Omo 6@}’
n p=1

Note the negative values, £, < 0, correspond to the states localized on the scatterer. These
states do not contribute to current.



Floguet scattering matrix

Micro-reversibility

In the stationary case the Schrédinger equation remains invariant under t — —t if
simultaneously to reverse a magnetic field direction and to replace the wave function by its
complex conjugate.

In the case of a dynamical scattering the time reversal can change a time dependent
Hamiltonian. Let us assume that the Hamiltonian  depends  on
N, parameters pi(#), 1 = 1,..., N, which are all periodic in time:

pi(t) = pio + pi1 cos(L20f + ;)
The Hamiltonian remains invariant if in addition we change the signs of all the phases
©; — —i, Yi

Thus the micro-reversibility results in the following symmetry conditions:

SF,(Iﬁ (Ea Em H& {(10}) — SF,ﬁ(I (Em E& _Ha {_90})



summary

Dynamic scattering
perturbation theory; weak potential
Floquet theorem; periodic in time potentials with arbitrary strength

Floquet scattering matrix



Thank you for your attention!



