Non-stationary scattering theory

Pető jános

Current operator

- Operators for scattered electrons expressed in terms of operators for incident electrons
- Floquet scattering matrix
- Takeing into account the change of electron energy during scattering (several $\hbar\Omega_0$ quanta)
- $b_{\alpha}(E) = \sum_{n=-\infty}^{\infty} \sum_{\beta=1}^{N_r} S_{\alpha\beta}^F (E, E_n) a_{\beta}(E_n)$
- $b_{\alpha}^{+}(E) = \sum_{n=-\infty}^{\infty} \sum_{\beta=1}^{N_r} S_{\alpha\beta}^{F^{*}}(E, E_n) a_{\alpha}^{+}(E_n)$
- Above equations together with unitarity provide right anti-commutation relations (b-operators similar to a-operators)

Current operator

- We assume: periodicity in time varying of scattering properties causes periodic current
- Frequency representation:

•
$$I_{\alpha}(t) = \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} e^{-i\omega t} I_{\alpha}(\omega)$$

- $I_{\alpha}(\omega) = \int_{-\infty}^{\infty} dt \, e^{i\omega t} I_{\alpha}(t)$ (Fourier transformation)
- Current operator expressed in terms of a, b operators:

•
$$I_{\alpha}(t) = \frac{e}{h} \iint dE dE' e^{i\frac{E-E'}{h}t} \{b_{\alpha}^{+}(E)b_{\alpha}(E') - a_{\alpha}^{+}(E)a_{\alpha}(E')\}$$

Current operator

- Using this equation, we calculate:
- $I_{\alpha}(\omega) = e \int_{0}^{\infty} dE \{b_{\alpha}^{+}(E)b_{\alpha}(E + \hbar\omega) a_{\alpha}^{+}(E)a_{\alpha}(E + \hbar\omega)\}$

AC current

- Substituting the equations for a,b operators into the equation for current (expressed above)
- Calculate current spectrum: $I_{\alpha}(\omega) = \langle \widehat{I_{\alpha}}(\omega) \rangle$
- $I_{\alpha}(\omega) = \sum_{l=-\infty}^{\infty} 2\pi \delta(\omega l\Omega_0) I_{\alpha,l}$
- $I_{\alpha,l} = \frac{e}{h} \int_0^\infty dE \left\{ \sum_{\beta=1}^{N_r} \sum_{n=-\infty}^\infty S_{\alpha\beta}^{F^*} (E, E_n) S_{\alpha\beta}^F (E_l, E_n) f_{\beta}(E_n) \delta_{l0} f_{\alpha}(E) \right\}$
- This can be rewritten $(E_n \to E, n \to -n)$:
- $I_{\alpha,l} = \frac{e}{h} \int_0^\infty dE \sum_{\beta=1}^{N_r} \sum_{n=-\infty}^\infty S_{\alpha\beta}^{F^*}(E_n, E) S_{\alpha\beta}^F(E_{l+n}, E) \{ f_{\beta}(E) f_{\alpha}(E_n) \}$
- The above equation is convenient in case of slow variation

AC current

- Using these equations we can arrive at the time-dependent current:
- $I_{\alpha}(t) = \sum_{l=-\infty}^{\infty} e^{-il\Omega_0 t} I_{\alpha,l}$
- This is periodic in time: $I_{\alpha}(t) = I_{\alpha}\left(t + \frac{2\pi}{\Omega_0}\right)$

DC current

- $I_{\alpha}(t)$ has a time-independent part
- Only exists under special conditions
- We use I=0
- $I_{\alpha,0} = \frac{e}{h} \int_0^\infty dE \left\{ \sum_{n=-\infty}^\infty \sum_{\beta=1}^{N_r} \left| S_{\alpha\beta}^F(E, E_n) \right|^2 f_\beta(E_n) f_\alpha(E) \right\}$
- DC current is subject to conservation law: $\sum_{\alpha=0}^{N_r} I_{\alpha,0} = 0$
- $I_{\alpha,0} = \frac{e}{h} \int_0^\infty dE \sum_{n=-\infty}^\infty \sum_{\beta=1}^{N_r} |S_{\alpha\beta}^F(E_n, E)|^2 \{ f_{\beta}(E) f_{\alpha}(E_n) \}$
- From this equation we can see that (for $\hbar\Omega_0\ll\mu$) only electrons close to the Fermi energy contribute to the current
- Energy window is defined by the maximum of: $\hbar\Omega_0$, $\left|eV_{\alpha\beta}\right|$, k_BT_{α}

DC current

•
$$I_{\alpha,0} = \frac{e}{h} \int_0^\infty dE \sum_{n=-\infty}^\infty \sum_{\beta=1}^{N_r} \left\{ \left| S_{\alpha\beta}^F(E_n, E) \right|^2 f_{\beta}(E) - \left| S_{\beta\alpha}^F(E_n, E) \right|^2 f_{\alpha}(E) \right\}$$

- DC current in lead α as the difference of two electron flows
- First term: electrons from various leads β scatter into lead α
- Second term: electrons from lead α scatter into leads β
- All the above written equations are equivalent

Adiabatic approximation for the Floquet scattering matrix

- One needs to solve the non-stationary Schrödinger equation
- Stationary scattering matrix S has $N_r \times N_r$ elements, while S^F has more, $N_r \times (2n_{max} + 1)^2$ (n_{max} : max. number of $\hbar\Omega_0$ quanta)
- If $\delta U \ll \hbar\Omega_0$, then $n_{max}=1$, if $\delta U \gg \hbar\Omega_0$, then $n_{max}\gg 1$
- Multi-photon processes are important, if scatterer parameters vary slowly
- When $\Omega_0 \to 0$, the scatterer should not feel dynamic to scattered electrons, but there are principal differences between stationary and non-stationary scatterers

Adiabatic approximation for the Floquet scattering matrix

Frozen scattering matrix

- ullet Stationary scattering matrix S depends on p_i parameters varied periodically in time
- $S(t,E) = S({p(t)},E) = S(t+\tau,E), \tau = \frac{2\pi}{\Omega_0}$
- We fix all paramters at $t=t_0$ and $S(t_0,E)$ describes this scatterer
- Treating every t moment like this defines the frozen scattering matrix (t is a parameter)
- At $\Omega_0 \to 0$ there exists some relation between the frozen and Floquet scattering matrices
- $S^F = \sum_{q=0}^{\infty} (\hbar\Omega_0)^q S^{F(q)}$ adiabatic expansion

Adiabatic approximation for the Floquet scattering matrix Zeroth order approximation

- q=0, $S^{F(0)}$ only depends on initial E energy (initial=final energy)
- $S_{\alpha\beta}^F(E_n,E)$ describes electron energy change:

$$\Psi_{E_{n},\alpha}^{(out)} \sim S_{\alpha\beta}^{F}(E_{n},E)\Psi_{E,\beta}^{(in)}; \Psi_{E,\beta}^{(in)} \sim e^{-i\frac{Et}{\hbar}}; \Psi_{E_{n},\alpha}^{(out)} \sim e^{-i\frac{Ent}{\hbar}} = e^{-i\frac{Et}{\hbar}}e^{-in\Omega_{0}t}$$

- $\Psi_{E,\alpha}^{(out)} \sim S_{\alpha\beta}(E_n, E) \Psi_{E,\beta}^{(in)}$ with the frozen scattering matrix
- Fourier expansion: $S(t,E) = \sum_{n=-\infty}^{\infty} e^{-in\Omega_0 t} S_n(E)$
- Floquet scattering matrix elements=Fourier coefficients of frozen scattering matrix
- $S^{F(0)}(E_n, E) = S_n(E)$
- $S^{F(0)}(E, E_n) = S_{-n}(E)$

Adiabatic approximation for the Floquet scattering matrix

First order approximation

- q=1, $E \neq E_n$, simplest generalization of zeroth order would be the above written equations with $S\left(\frac{E+E_n}{2}\right)$ frozen scattering matrix, but this is not unitary!
- We have to introduce additional term: $\hbar\Omega_0A_n(E)$, where $A_n(E)$ is Fourier transform of A(t,E)

•
$$\hbar\Omega_0 S^{F(1)}(E_n, E) = \frac{n\hbar\Omega_0}{2} \frac{\partial S_n(E)}{\partial E} + \hbar\Omega_0 A_n(E)$$

•
$$\hbar\Omega_0 S^{F(1)}(E, E_n) = \frac{n\hbar\Omega_0}{2} \frac{\partial S_{-n}(E)}{\partial E} + \hbar\Omega_0 A_{-n}(E)$$

- These equations point out the actual expansion parameter: $\varpi = \frac{\hbar\Omega_0}{\delta E} \ll 1$ (adiabacity parameter)
- δE : characteristic energy scale where stationary scattering matrix changes significantly

Anomalous scattering matrix

 The A matrix can not be expressed explicitly in terms of the frozen scattering matrix

•
$$S_{\alpha\beta}^{F}(E_n, E) = S_{\alpha\beta,n}(E) + \frac{n\hbar\Omega_0}{2} \frac{\partial S_{\alpha\beta,n}(E)}{\partial E} + \hbar\Omega_0 A_{\alpha\beta,n}(E) + \mathcal{O}(\varpi^2)$$

Using the unitarity of the Floquet matrix:

• S(t,E) is unitary and we omit terms of order Ω_0^2

Anomalous scattering matrix

We use inverse Fourier transformation and arrive at the following:

•
$$\frac{i}{\Omega_0} \frac{\partial S^+}{\partial E} \frac{\partial S}{\partial t} + \frac{i}{2\Omega_0} \left\{ \frac{\partial^2 S^+}{\partial t \partial E} S + S^+ \frac{\partial^2 S}{\partial t \partial E} \right\} + A^+ S + S^+ A = 0$$

- We can simplify using: $\frac{\partial^2 S^+ S}{\partial t \partial E} = 0$
- $\hbar\Omega_0[S^+(t,E)A(t,E) + A^+(t,E)S(t,E)] = \frac{1}{2}P\{S^+(t,E),S(t,E)\}$
- P is the Poisson-bracket of the two matrices
- P is self-adjoint and traceless

Anomalous scattering matrix

- Symmetry conditions
- $S(t, E, H, \{\varphi\}) = S(-t, E, H, \{-\varphi\}) \Rightarrow A(t, E, H, \{\varphi\}) = -A(-t, E, H, \{-\varphi\})$
- $S_n(E, H, \{\varphi\}) = S_{-n}(E, H, \{-\varphi\}) \Rightarrow A_n(E, H, \{\varphi\}) = -A_{-n}(E, H, \{-\varphi\})$
- $A_{\alpha\beta}(t, E, H, \{\varphi\}) = -A_{\beta\alpha}(t, E, -H, \{\varphi\})$
- $S_{\alpha\beta}(t, E, H, \{\varphi\}) = S_{\beta\alpha}(t, E, -H, \{\varphi\})$