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Current operator

• Operators for scattered electrons expressed in terms of operators for incident
electrons

• Floquet scattering matrix

• Takeing into account the change of electron energy during scattering (several ℏΩ0
quanta)

• 𝑏𝛼 𝐸 =  𝑛=−∞
∞  

𝛽=1
𝑁𝑟 𝑆𝛼𝛽

𝐹 𝐸, 𝐸𝑛 𝑎𝛽 𝐸𝑛

• 𝑏𝛼
+ 𝐸 =  𝑛=−∞

∞  
𝛽=1
𝑁𝑟 𝑆𝛼𝛽

𝐹 ∗
𝐸, 𝐸𝑛 𝑎𝛼

+ 𝐸𝑛

• Above equations together with unitarity provide right anti-commutation relations 
(b-operators similar to a-operators)



Current operator

• We assume: periodicity in time varying of scattering properties causes periodic
current

• Frequency representation:

• 𝐼𝛼 𝑡 =  −∞
∞ 𝑑𝜔

2𝜋
𝑒−𝑖𝜔𝑡𝐼𝛼 𝜔

• 𝐼𝛼 𝜔 =  −∞
∞

𝑑𝑡 𝑒𝑖𝜔𝑡𝐼𝛼 𝑡 (Fourier transformation)

• Current operator expressed in terms of a, b operators:

• 𝐼𝛼 𝑡 =
𝑒

ℎ
 𝑑𝐸𝑑𝐸′𝑒𝑖

𝐸−𝐸′

ℏ
𝑡 𝑏𝛼

+ 𝐸 𝑏𝛼 𝐸′ − 𝑎𝛼
+ 𝐸 𝑎𝛼 𝐸′



Current operator

• Using this equation, we calculate:

• 𝐼𝛼 𝜔 = 𝑒  0
∞
𝑑𝐸 𝑏𝛼

+ 𝐸 𝑏𝛼 𝐸 + ℏ𝜔 − 𝑎𝛼
+ 𝐸 𝑎𝛼 𝐸 + ℏ𝜔



AC current

• Substituting the equations for a,b operators into the equation for current
(expressed above)

• Calculate current spectrum: 𝐼𝛼 𝜔 =  𝐼𝛼 𝜔

• 𝐼𝛼 𝜔 =  𝑙=−∞
∞ 2𝜋𝛿 𝜔 − 𝑙Ω0 𝐼𝛼,𝑙

• 𝐼𝛼,𝑙 =
𝑒

ℎ
 0
∞
𝑑𝐸  

𝛽=1
𝑁𝑟  𝑛=−∞

∞ 𝑆𝛼𝛽
𝐹 ∗

𝐸, 𝐸𝑛 𝑆𝛼𝛽
𝐹 𝐸𝑙 , 𝐸𝑛 𝑓𝛽 𝐸𝑛 − 𝛿𝑙0𝑓𝛼 𝐸

• This can be rewritten (𝐸𝑛 → 𝐸, 𝑛 → −𝑛) :

• 𝐼𝛼,𝑙 =
𝑒

ℎ
 0
∞
𝑑𝐸  𝛽=1

𝑁𝑟  𝑛=−∞
∞ 𝑆𝛼𝛽

𝐹 ∗
𝐸𝑛, 𝐸 𝑆𝛼𝛽

𝐹 𝐸𝑙+𝑛, 𝐸 𝑓𝛽 𝐸 − 𝑓𝛼 𝐸𝑛

• The above equation is convenient in case of slow variation



AC current

• Using these equations we can arrive at the time-dependent current:

• 𝐼𝛼 𝑡 =  𝑙=−∞
∞ 𝑒−𝑖𝑙Ω0𝑡 𝐼𝛼,𝑙

• This is periodic in time: 𝐼𝛼 𝑡 = 𝐼𝛼 𝑡 +
2𝜋

Ω0



DC current

• 𝐼𝛼 𝑡 has a time-independent part

• Only exists under special conditions

• We use l=0

• 𝐼𝛼,0 =
𝑒

ℎ
 0
∞
𝑑𝐸  𝑛=−∞

∞  
𝛽=1
𝑁𝑟 𝑆𝛼𝛽

𝐹 𝐸, 𝐸𝑛
2
𝑓𝛽 𝐸𝑛 − 𝑓𝛼 𝐸

• DC current is subject to conservation law:  𝛼=0
𝑁𝑟 𝐼𝛼,0 = 0

• 𝐼𝛼,0 =
𝑒

ℎ
 0
∞
𝑑𝐸  𝑛=−∞

∞  
𝛽=1
𝑁𝑟 𝑆𝛼𝛽

𝐹 𝐸𝑛, 𝐸
2
𝑓𝛽 𝐸 − 𝑓𝛼 𝐸𝑛

• From this equation we can see that (for ℏΩ0 ≪ 𝜇) only electrons close to the
Fermi energy contribute to the current

• Energy window is defined by the maximum of: ℏΩ0, 𝑒𝑉𝛼𝛽 , 𝑘𝐵𝑇𝛼



DC current

• 𝐼𝛼,0 =
𝑒

ℎ
 0
∞
𝑑𝐸  𝑛=−∞

∞  
𝛽=1
𝑁𝑟 𝑆𝛼𝛽

𝐹 𝐸𝑛, 𝐸
2
𝑓𝛽 𝐸 − 𝑆𝛽𝛼

𝐹 𝐸𝑛, 𝐸
2
𝑓𝛼 𝐸

• DC current in lead α as the difference of two electron flows

• First term: electrons from various leads β scatter into lead α

• Second term: electrons from lead α scatter into leads β

• All the above written equations are equivalent



Adiabatic approximation for the Floquet
scattering matrix
• One needs to solve the non-stationary Schrödinger equation

• Stationary scattering matrix S has 𝑁𝑟 × 𝑁𝑟elements, while SF has more, 𝑁𝑟 ×
𝑁𝑟 × 2𝑛𝑚𝑎𝑥 + 1 2 (𝑛𝑚𝑎𝑥: max. number of ℏΩ0 quanta)

• If 𝛿𝑈 ≪ ℏΩ0, then 𝑛𝑚𝑎𝑥 = 1, if 𝛿𝑈 ≫ ℏΩ0, then 𝑛𝑚𝑎𝑥 ≫ 1

• Multi-photon processes are important, if scatterer parameters vary slowly

• When Ω0 → 0, the scatterer should not feel dynamic to scattered electrons, but
there are principal differences between stationary and non-stationary scatterers



Adiabatic approximation for the Floquet
scattering matrix
Frozen scattering matrix
• Stationary scattering matrix S depends on 𝑝𝑖 parameters varied periodically in

time

• 𝑆 𝑡, 𝐸 = 𝑆 𝑝 𝑡 , 𝐸 = 𝑆 𝑡 + 𝜏, 𝐸 , 𝜏 =
2𝜋

Ω0

• We fix all paramters at 𝑡 = 𝑡0 and 𝑆 𝑡0, 𝐸 describes this scatterer

• Treating every t moment like this defines the frozen scattering matrix (t is a 
parameter)

• At Ω0 → 0 there exists some relation between the frozen and Floquet scattering
matrices

• 𝑆𝐹 =  𝑞=0
∞ ℏΩ0

𝑞 𝑆𝐹 𝑞 adiabatic expansion



Adiabatic approximation for the Floquet
scattering matrix
Zeroth order approximation
• q=0, 𝑆𝐹 0 only depends on initial E energy (initial=final energy)

• 𝑆𝛼𝛽
𝐹 𝐸𝑛, 𝐸 describes electron energy change: 

Ψ𝐸𝑛,𝛼
𝑜𝑢𝑡

~𝑆𝛼𝛽
𝐹 𝐸𝑛, 𝐸 Ψ𝐸,𝛽

𝑖𝑛
; Ψ𝐸,𝛽

𝑖𝑛
~𝑒−𝑖

𝐸𝑡

ℏ ; Ψ𝐸𝑛,𝛼
𝑜𝑢𝑡

~𝑒−𝑖
𝐸𝑛𝑡

ℏ = 𝑒−𝑖
𝐸𝑡

ℏ 𝑒−𝑖𝑛Ω0𝑡

• Ψ𝐸,𝛼
𝑜𝑢𝑡

~𝑆𝛼𝛽 𝐸𝑛, 𝐸 Ψ𝐸,𝛽
𝑖𝑛

with the frozen scattering matrix

• Fourier expansion: 𝑆 𝑡, 𝐸 =  𝑛=−∞
∞ 𝑒−𝑖𝑛Ω0𝑡𝑆𝑛 𝐸

• Floquet scattering matrix elements=Fourier coefficients of frozen scattering
matrix

• 𝑆𝐹 0 𝐸𝑛, 𝐸 = 𝑆𝑛 𝐸

• 𝑆𝐹 0 𝐸, 𝐸𝑛 = 𝑆−𝑛 𝐸



Adiabatic approximation for the Floquet
scattering matrix
First order approximation
• q=1, 𝐸 ≠ 𝐸𝑛, simplest generalization of zeroth order would be the above written

equations with 𝑆
𝐸+𝐸𝑛

2
frozen scattering matrix, but this is not unitary!

• We have to introduce additional term: ℏΩ0𝐴𝑛 𝐸 , where 𝐴𝑛 𝐸 is Fourier 
transform of 𝐴 𝑡, 𝐸

• ℏΩ0𝑆
𝐹 1 𝐸𝑛, 𝐸 =

𝑛ℏΩ0

2

𝜕𝑆𝑛 𝐸

𝜕𝐸
+ ℏΩ0𝐴𝑛 𝐸

• ℏΩ0𝑆
𝐹 1 𝐸, 𝐸𝑛 =

𝑛ℏΩ0

2

𝜕𝑆−𝑛 𝐸

𝜕𝐸
+ ℏΩ0𝐴−𝑛 𝐸

• These equations point out the actual expansion parameter: 𝜛 =
ℏΩ0

𝛿𝐸
≪ 1

(adiabacity parameter)

• 𝛿𝐸: characteristic energy scale where stationary scattering matrix changes
significantly



Anomalous scattering matrix

• The A matrix can not be expressed explicitly in terms of the frozen scattering
matrix

• 𝑆𝛼𝛽
𝐹 𝐸𝑛, 𝐸 = 𝑆𝛼𝛽,𝑛 𝐸 +

𝑛ℏΩ0

2

𝜕𝑆𝛼𝛽,𝑛 𝐸

𝜕𝐸
+ ℏΩ0𝐴𝛼𝛽,𝑛 𝐸 + 𝒪 𝜛2

• Using the unitarity of the Floquet matrix:

•  𝑛=−∞
∞  𝛼=1

𝑁𝑟 𝑆𝛼𝛾,𝑛−𝑚
∗ 𝐸 +

𝑛+𝑚 ℏΩ0

2

𝜕𝑆𝛼𝛾,𝑛−𝑚
∗ 𝐸

𝜕𝐸
+ ℏΩ0𝐴𝛼𝛾,𝑛−𝑚

∗ 𝐸 𝑆𝛼𝛽,𝑛 𝐸 +
𝑛ℏΩ0

2

𝜕𝑆𝛼𝛽,𝑛 𝐸

𝜕𝐸
+ ℏΩ0𝐴𝛼𝛽,𝑛 𝐸 = 𝛿𝛽𝛾𝛿𝑚0

• S(t,E) is unitary and we omit terms of order Ω0
2



Anomalous scattering matrix

•  𝑛=−∞
∞  𝛼=1

𝑁𝑟 𝑆𝛼𝛽,𝑛 𝐸 𝑛 −
𝑛−𝑚

2

𝜕𝑆𝛼𝛾,𝑛−𝑚
∗ 𝐸

𝜕𝐸
+

𝑛

2

𝜕𝑆𝛼𝛽,𝑛 𝐸

𝜕𝐸
𝑆𝛼𝛾,𝑛−𝑚
∗ 𝐸 + 𝑆𝛼𝛽,𝑛 𝐸 𝐴𝛼𝛾,𝑛−𝑚

∗ 𝐸 + 𝐴𝛼𝛽,𝑛 𝐸 𝑆𝛼𝛾,𝑛−𝑚
∗ 𝐸 = 0

• We use inverse Fourier transformation and arrive at the following:

•
𝑖

Ω0

𝜕𝑆+

𝜕𝐸

𝜕𝑆

𝜕𝑡
+

𝑖

2Ω0

𝜕2𝑆+

𝜕𝑡𝜕𝐸
𝑆 + 𝑆+

𝜕2𝑆

𝜕𝑡𝜕𝐸
+ 𝐴+𝑆 + 𝑆+𝐴 = 0

• We can simplify using: 
𝜕2𝑆+𝑆

𝜕𝑡𝜕𝐸
= 0

• ℏΩ0 𝑆+ 𝑡, 𝐸 𝐴 𝑡, 𝐸 + 𝐴+ 𝑡, 𝐸 𝑆 𝑡, 𝐸 =
1

2
𝑃 𝑆+ 𝑡, 𝐸 , 𝑆 𝑡, 𝐸

• 𝑃 is the Poisson-bracket of the two matrices

• P is self-adjoint and traceless



Anomalous scattering matrix

• Symmetry conditions

• 𝑆 𝑡, 𝐸, 𝐻, 𝜑 = 𝑆 −𝑡, 𝐸, 𝐻, −𝜑 ⇒ 𝐴 𝑡, 𝐸, 𝐻, 𝜑 =
− 𝐴 −𝑡, 𝐸, 𝐻, −𝜑

• 𝑆𝑛 𝐸,𝐻, 𝜑 = 𝑆−𝑛 𝐸,𝐻, −𝜑 ⇒ 𝐴𝑛 𝐸,𝐻, 𝜑 =
−𝐴−𝑛 𝐸,𝐻, −𝜑

• 𝐴𝛼𝛽 𝑡, 𝐸, 𝐻, 𝜑 = −𝐴𝛽𝛼 𝑡, 𝐸, −𝐻, 𝜑

• 𝑆𝛼𝛽 𝑡, 𝐸, 𝐻, 𝜑 = 𝑆𝛽𝛼 𝑡, 𝐸, −𝐻, 𝜑


