Non-stationary scattering theory

Pető jános

Current operator

- Operators for scattered electrons expressed in terms of operators for incident electrons
- Floquet scattering matrix
- Takeing into account the change of electron energy during scattering (several $\hbar \Omega_{0}$ quanta)
- $b_{\alpha}(E)=\sum_{n=-\infty}^{\infty} \sum_{\beta=1}^{N_{r}} S_{\alpha \beta}^{F}\left(E, E_{n}\right) a_{\beta}\left(E_{n}\right)$
- $b_{\alpha}^{+}(E)=\sum_{n=-\infty}^{\infty} \sum_{\beta=1}^{N_{r}} S_{\alpha \beta}^{F}{ }^{*}\left(E, E_{n}\right) a_{\alpha}^{+}\left(E_{n}\right)$
- Above equations together with unitarity provide right anti-commutation relations (b-operators similar to a-operators)

Current operator

- We assume: periodicity in time varying of scattering properties causes periodic current
- Frequency representation:
- $I_{\alpha}(t)=\int_{-\infty}^{\infty} \frac{d \omega}{2 \pi} e^{-i \omega t} I_{\alpha}(\omega)$
- $I_{\alpha}(\omega)=\int_{-\infty}^{\infty} d t e^{i \omega t} I_{\alpha}(t)$ (Fourier transformation)
- Current operator expressed in terms of a, b operators:
- $I_{\alpha}(t)=\frac{e}{h} \iint d E d E^{\prime} e^{i \frac{E-E^{\prime}}{\hbar} t}\left\{b_{\alpha}^{+}(E) b_{\alpha}\left(E^{\prime}\right)-a_{\alpha}^{+}(E) a_{\alpha}\left(E^{\prime}\right)\right\}$

Current operator

- Using this equation, we calculate:
- $I_{\alpha}(\omega)=e \int_{0}^{\infty} d E\left\{b_{\alpha}^{+}(E) b_{\alpha}(E+\hbar \omega)-a_{\alpha}^{+}(E) a_{\alpha}(E+\hbar \omega)\right\}$

AC current

- Substituting the equations for a, b operators into the equation for current (expressed above)
- Calculate current spectrum: $I_{\alpha}(\omega)=\left\langle\widehat{I_{\alpha}}(\omega)\right\rangle$
- $I_{\alpha}(\omega)=\sum_{l=-\infty}^{\infty} 2 \pi \delta\left(\omega-l \Omega_{0}\right) I_{\alpha, l}$
- $I_{\alpha, l}=\frac{e}{h} \int_{0}^{\infty} d E\left\{\sum_{\beta=1}^{N_{r}} \sum_{n=-\infty}^{\infty} S_{\alpha \beta}^{F}{ }^{*}\left(E, E_{n}\right) S_{\alpha \beta}^{F}\left(E_{l}, E_{n}\right) f_{\beta}\left(E_{n}\right)-\delta_{l 0} f_{\alpha}(E)\right\}$
- This can be rewritten $\left(E_{n} \rightarrow E, n \rightarrow-n\right)$:
- $I_{\alpha, l}=\frac{e}{h} \int_{0}^{\infty} d E \sum_{\beta=1}^{N_{r}} \sum_{n=-\infty}^{\infty} S_{\alpha \beta}^{F}{ }^{*}\left(E_{n}, E\right) S_{\alpha \beta}^{F}\left(E_{l+n}, E\right)\left\{f_{\beta}(E)-f_{\alpha}\left(E_{n}\right)\right\}$
- The above equation is convenient in case of slow variation

AC current

- Using these equations we can arrive at the time-dependent current:
- $I_{\alpha}(t)=\sum_{l=-\infty}^{\infty} e^{-i l \Omega_{0} t} I_{\alpha, l}$
- This is periodic in time: $I_{\alpha}(t)=I_{\alpha}\left(t+\frac{2 \pi}{\Omega_{0}}\right)$

DC current

- $I_{\alpha}(t)$ has a time-independent part
- Only exists under special conditions
- We use $\mathrm{I}=0$
- $I_{\alpha, 0}=\frac{e}{h} \int_{0}^{\infty} d E\left\{\sum_{n=-\infty}^{\infty} \sum_{\beta=1}^{N_{r}}\left|S_{\alpha \beta}^{F}\left(E, E_{n}\right)\right|^{2} f_{\beta}\left(E_{n}\right)-f_{\alpha}(E)\right\}$
- DC current is subject to conservation law: $\sum_{\alpha=0}^{N_{r}} I_{\alpha, 0}=0$
- $I_{\alpha, 0}=\frac{e}{h} \int_{0}^{\infty} d E \sum_{n=-\infty}^{\infty} \sum_{\beta=1}^{N_{r}}\left|S_{\alpha \beta}^{F}\left(E_{n}, E\right)\right|^{2}\left\{f_{\beta}(E)-f_{\alpha}\left(E_{n}\right)\right\}$
- From this equation we can see that (for $\hbar \Omega_{0} \ll \mu$) only electrons close to the Fermi energy contribute to the current
- Energy window is defined by the maximum of: $\hbar \Omega_{0},\left|e V_{\alpha \beta}\right|, k_{B} T_{\alpha}$

DC current

- $I_{\alpha, 0}=\frac{e}{h} \int_{0}^{\infty} d E \sum_{n=-\infty}^{\infty} \sum_{\beta=1}^{N_{r}}\left\{\left|S_{\alpha \beta}^{F}\left(E_{n}, E\right)\right|^{2} f_{\beta}(E)-\left|S_{\beta \alpha}^{F}\left(E_{n}, E\right)\right|^{2} f_{\alpha}(E)\right\}$
- DC current in lead α as the difference of two electron flows
- First term: electrons from various leads β scatter into lead α
- Second term: electrons from lead α scatter into leads β
- All the above written equations are equivalent

Adiabatic approximation for the Floquet scattering matrix

- One needs to solve the non-stationary Schrödinger equation
- Stationary scattering matrix S has $N_{r} \times N_{r}$ elements, while S^{F} has more, $N_{r} \times$ $N_{r} \times\left(2 n_{\max }+1\right)^{2}$ ($n_{\max }$: max. number of $\hbar \Omega_{0}$ quanta)
- If $\delta U \ll \hbar \Omega_{0}$, then $n_{\max }=1$, if $\delta U \gg \hbar \Omega_{0}$, then $n_{\max } \gg 1$
- Multi-photon processes are important, if scatterer parameters vary slowly
- When $\Omega_{0} \rightarrow 0$, the scatterer should not feel dynamic to scattered electrons, but there are principal differences between stationary and non-stationary scatterers

Adiabatic approximation for the Floquet scattering matrix Frozen scattering matrix

- Stationary scattering matrix S depends on p_{i} parameters varied periodically in time
- $S(t, E)=S(\{p(t)\}, E)=S(t+\tau, E), \tau=\frac{2 \pi}{\Omega_{0}}$
- We fix all paramters at $t=t_{0}$ and $S\left(t_{0}, E\right)$ describes this scatterer
- Treating every t moment like this defines the frozen scattering matrix (t is a parameter)
- At $\Omega_{0} \rightarrow 0$ there exists some relation between the frozen and Floquet scattering matrices
- $S^{F}=\sum_{q=0}^{\infty}\left(\hbar \Omega_{0}\right)^{q} S^{F(q)}$ adiabatic expansion

Adiabatic approximation for the Floquet scattering matrix
 Zeroth order approximation

- $\mathrm{q}=0, S^{F(0)}$ only depends on initial E energy (initial=final energy)
- $S_{\alpha \beta}^{F}\left(E_{n}, E\right)$ describes electron energy change:

$$
\Psi_{E_{n}, \alpha}^{(o u t)} \sim S_{\alpha \beta}^{F}\left(E_{n}, E\right) \Psi_{E, \beta}^{(\text {in })} ; \Psi_{E, \beta}^{(\text {in })} \sim e^{-i \frac{E t}{\hbar}} ; \Psi_{E_{n}, \alpha}^{(o u t)} \sim e^{-i \frac{E_{n} t}{\hbar}}=e^{-i \frac{E t}{\hbar}} e^{-i n \Omega_{0} t}
$$

- $\Psi_{E, \alpha}^{(\text {out })} \sim S_{\alpha \beta}\left(E_{n}, E\right) \Psi_{E, \beta}^{(\text {in })}$ with the frozen scattering matrix
- Fourier expansion: $S(t, E)=\sum_{n=-\infty}^{\infty} e^{-i n \Omega_{0} t} S_{n}(E)$
- Floquet scattering matrix elements=Fourier coefficients of frozen scattering matrix
- $S^{F(0)}\left(E_{n}, E\right)=S_{n}(E)$
- $S^{F(0)}\left(E, E_{n}\right)=S_{-n}(E)$

Adiabatic approximation for the Floquet scattering matrix
 First order approximation

- $q=1, E \neq E_{n}$, simplest generalization of zeroth order would be the above written equations with $S\left(\frac{E+E_{n}}{2}\right)$ frozen scattering matrix, but this is not unitary!
- We have to introduce additional term: $\hbar \Omega_{0} A_{n}(E)$, where $A_{n}(E)$ is Fourier transform of $A(t, E)$
- $\hbar \Omega_{0} S^{F(1)}\left(E_{n}, E\right)=\frac{n \hbar \Omega_{0}}{2} \frac{\partial S_{n}(E)}{\partial E}+\hbar \Omega_{0} A_{n}(E)$
- $\hbar \Omega_{0} S^{F(1)}\left(E, E_{n}\right)=\frac{n \hbar \Omega_{0}}{2} \frac{\partial S_{-n}(E)}{\partial E}+\hbar \Omega_{0} A_{-n}(E)$
- These equations point out the actual expansion parameter: $\varpi=\frac{\hbar \Omega_{0}}{\delta E} \ll 1$ (adiabacity parameter)
- δE : characteristic energy scale where stationary scattering matrix changes significantly

Anomalous scattering matrix

- The A matrix can not be expressed explicitly in terms of the frozen scattering matrix
- $S_{\alpha \beta}^{F}\left(E_{n}, E\right)=S_{\alpha \beta, n}(E)+\frac{n \hbar \Omega_{0}}{2} \frac{\partial S_{\alpha \beta, n}(E)}{\partial E}+\hbar \Omega_{0} A_{\alpha \beta, n}(E)+\mathcal{O}\left(\varpi^{2}\right)$
- Using the unitarity of the Floquet matrix:
- $\sum_{n=-\infty}^{\infty} \sum_{\alpha=1}^{N_{r}}\left\{\left\{_{\alpha \gamma, n-m}^{*}(E)+\frac{(n+m) \hbar \Omega_{0}}{2} \frac{\partial S_{\alpha \gamma, n-m}^{*}(E)}{\partial E}+\hbar \Omega_{0} A_{\alpha \gamma, n-m}^{*}(E)\right\}\left\{S_{\alpha \beta, n}(E)+\frac{n \hbar \Omega_{0}}{2} \frac{\delta_{\alpha \beta \beta n}(E)}{\partial E}+\hbar \Omega_{0} A_{\alpha \beta, n}(E)\right\}=\delta_{\beta \gamma} \delta_{m 0}\right.$
- $\mathrm{S}(\mathrm{t}, \mathrm{E})$ is unitary and we omit terms of order Ω_{0}^{2}

Anomalous scattering matrix

- $\sum_{n=-\infty}^{\infty} \sum_{\alpha=1}^{N_{r}}\left\{S_{\alpha \beta, n}(E)\left(n-\frac{n-m}{2}\right) \frac{\partial \partial_{\alpha \gamma \gamma n-m}^{*}(E)}{\partial E}+\frac{n}{2} \frac{\partial S_{\alpha \beta, n}(E)}{\partial E} S_{\alpha \gamma, n-m}^{*}(E)+\left[S_{\alpha \beta, n}(E) A_{\alpha \gamma, n-m}^{*}(E)+A_{\alpha \beta, n}(E) S_{\alpha \gamma, n-m}^{*}(E)\right]\right\}=0$
- We use inverse Fourier transformation and arrive at the following:
- $\frac{i}{\Omega_{0}} \frac{\partial S^{+}}{\partial E} \frac{\partial S}{\partial t}+\frac{i}{2 \Omega_{0}}\left\{\frac{\partial^{2} S^{+}}{\partial t \partial E} S+S^{+} \frac{\partial^{2} S}{\partial t \partial E}\right\}+A^{+} S+S^{+} A=0$
- We can simplify using: $\frac{\partial^{2} S^{+} S}{\partial t \partial E}=0$
- $\hbar \Omega_{0}\left[S^{+}(t, E) A(t, E)+A^{+}(t, E) S(t, E)\right]=\frac{1}{2} P\left\{S^{+}(t, E), S(t, E)\right\}$
- P is the Poisson-bracket of the two matrices
- P is self-adjoint and traceless

Anomalous scattering matrix

- Symmetry conditions
- $S(t, E, H,\{\varphi\})=S(-t, E, H,\{-\varphi\}) \Rightarrow A(t, E, H,\{\varphi\})=$ $-A(-t, E, H,\{-\varphi\})$
- $S_{n}(E, H,\{\varphi\})=S_{-n}(E, H,\{-\varphi\}) \Rightarrow A_{n}(E, H,\{\varphi\})=$ $-A_{-n}(E, H,\{-\varphi\})$
- $A_{\alpha \beta}(t, E, H,\{\varphi\})=-A_{\beta \alpha}(t, E,-H,\{\varphi\})$
- $S_{\alpha \beta}(t, E, H,\{\varphi\})=S_{\beta \alpha}(t, E,-H,\{\varphi\})$

