Non-stationary scattering
theory
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Current operator

* Operators for scattered electrons expressed in terms of operators for incident
electrons

* Floguet scattering matrix

* Takeing into account the change of electron energy during scattering (several Af),
qguanta)

* bo(E) = X5-—oo X5 1 St (B, En)ag(Ep)
* bE(E) = T3 Xpt Sap (B En)ag(Ey)

* Above equations together with unitarity provide right anti-commutation relations
(b-operators similar to a-operators)



Current operator

* We assume: periodicity in time varying of scattering properties causes periodic
current

* Frequency representation:
e I,(t) = foo d;‘: —totr (w)

o [, (w) = f_oo dt e'®t[ (t) (Fourier transformation)

* Current operator expressed in terms of a, b operators:

Tt bt (E)bo(E") — at (E)ag(EN)}

* Io(t) = 7 [[ dEE'e’



Current operator

* Using this equation, we calculate:
+ Ip(w) = e [ dE{bg (E)bu(E + hw) — af (E)a,(E + hw)}



AC current

e Substituting the equations for a,b operators into the equation for current
(expressed above)

* Calculate current spectrum: I, (w) = (IAa(a)))
¢ Ly (@) = TP o0 278(w — 109) Iy,

* Ia,l — %fooo dE {Zg;l Z%O:—oo SCI:,B* (E: En )55,8 (El» En)f,B (En) o 5lofa(E)}

* This can be rewritten (E,, = E,n > —n):

* Ia,l — %fooo dE Zg;l Z?loz—ooSch:,B* (En: E)Sclx:ﬁ(EHn: E ){fﬁ(E) _ fa(En)}

* The above equation is convenient in case of slow variation



AC current

* Using these equations we can arrive at the time-dependent current:
o Ia(t) — Z(l)i—oo e—ilQOt Ia,l

* This is periodic in time: [,(t) = I, (t + —)



DC current

I, (t) has a time-independent part
Only exists under special conditions
We use |=0

o'} 0 Ny 2
Ia,O = %fo dE {Zn=—oo 23=1|S§E(Er En)| fB(En) _ fa(E)}
DC current is subject to conservation law: Zg’;o Ino=20

oo == fy AE S5 oo B3 |SE (B )| {3 (B) — fu(En))

From this equation we can see that (for 1{)y << u) only electrons close to the
Fermi energy contribute to the current

Energy window is defined by the maximum of: Af),, |eVaﬁ|, kgT,



DC current

go = [ AE oo XN {1SEg (B ED| f5(E) — |Sh (B ED| (B}
* DC current in lead a as the difference of two electron flows

* First term: electrons from various leads B scatter into lead a

* Second term: electrons from lead a scatter into leads 8

* All the above written equations are equivalent



Adiabatic approximation for the Floquet
scattering matrix

* One needs to solve the non-stationary Schrodinger equation

e Stationary scattering matrix S has N, X N,.elements, while S has more, N,. X
N, X (21,4, + 1)? (n,,,4,: Max. number of AQ, quanta)

* If U K hQy, thenn,, = 1,if SU > hQ,, thenng,, g, > 1
* Multi-photon processes are important, if scatterer parameters vary slowly

* When Q, — 0, the scatterer should not feel dynamic to scattered electrons, but
there are principal differences between stationary and non-stationary scatterers



Adiabatic approximation for the Floquet
scattering matrix
Frozen scattering matrix

* Stationary scattering matrix S depends on p; parameters varied periodically in
time
+ S(t,E) = S(p(D}E) = S(t +1,E), 1 = =
0
* We fix all paramters at t = t, and S(t,, E) describes this scatterer

* Treating every t moment like this defines the frozen scattering matrix (t is a
parameter)

* At )y — 0 there exists some relation between the frozen and Floquet scattering
matrices

o« S = Yro(hQg)d SF(@ adiabatic expansion



Adiabatic approximation for the Floquet
scattering matrix
Zeroth order approximation

« g=0, SF(0) only depends on initial E energy (initial=final energy)
. 553 (E,, E) describes electron energy change:

. . Et . Et
W)~ SE (B, EYWL R Wi ~e ™ Wt ve ™ = e~ intot

. ‘Pé?;‘t)~5aﬁ (E,, E)‘sz) with the frozen scattering matrix
e Fourier expansion: S(t,E) = Y%__ e~ ts (F)

* Floquet scattering matrix elements=Fourier coefficients of frozen scattering
matrix

.« SFO(E E) =S5, (E)
« SFO(E E,) = S_,(E)



Adiabatic approximation for the Floquet
scattering matrix
First order approximation

* g=1, E # E,,, simplest generalization of zeroth order would be the above written
: : E+Ey, . . . .
equations with § ( x 3 frozen scattering matrix, but this is not unitary!

* We have to introduce additional term: 1QyA,,(E), where A,,(E) is Fourier
transform of A(t, E)

« WO SFW(E, E) = + hO A, (E)
+ hpSTO(E, E,) = 220 as-a’;(“ + hQyA_, (E)
* These equations point out the actual expansion parameter: w = o << 1

(adiabacity parameter)

* O0F: characteristic energy scale where stationary scattering matrix changes
significantly



Anomalous scattering matrix

* The A matrix can not be expressed explicitly in terms of the frozen scattering
matrix

hQo 0Sapn(E)
* 55,8 (En; E) = Sa[?,n(E) + z 2 : gE T hQOAa,B,n(E) T 0(52)

e Using the unitarity of the Floquet matrix:

(n+m)hQg 0Say n-m(E)

* nhQgy 0Sqpn(E)
2 OE + hQOAay;n_m(E)}{Saﬂ’n(E) + 0 B

2 OE

o Ny [ ox
¢ T Tty {Saynem(E) +

+ 10 Aapn(E)} = 8py6imo

e S(t,E) is unitary and we omit terms of order Q3



Anomalous scattering matrix

o0 Ny 0Say n-m(E) 0Sq n(E)
* Zn:—oo Za=1 {Saﬁ,n(E) ( nzm) yaE +Z gE ayn m(E) + [Saﬁ n(E)Aayn m(E) + Aaﬁ n(E)Sayn m(E)]}

We use inverse Fourier transformation and arrive at the following:

o i oSt oS i 625"' + 625 s N
Q, 0E ot ZQO{ataES_l_S }+A S+S5TA=0

 We can simplify usin L9%S7S 0
ity 8 3toE

AQo[ST(t,E)A(t,E) + AT(t,E)S(t,E)] = %P{S+(t, E),S(t, E)}

e P isthe Poisson-bracket of the two matrices

* Pis self-adjoint and traceless



Anomalous scattering matrix

* Symmetry conditions

*S(t,E,H {p}) =S(—t,E,H,{—¢}) = A(t,E,H {p}) =
— A(_t; E; H, {_QD})

* Su(E,H,{p}) = S_n(E,H,{—¢}) = An(E, H,{¢}) =
_A—n(E; H: {_(p})

* Aaﬁ(t» E, H! {(p}) — _A,Ba:(t; E, —H, {(p})
° Sdﬁ(tJ E,H, {(p}) — S,Ba((t) E,—H, {(p})



