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Floquet theorem

Non-stationary scattering theory - Time periodic potential

i~∂Ψ(t, ~r)

∂t
= H(t, ~r)Ψ(t, ~r)

H(t, ~r) = H0(~r) + V (t, ~r)

Floquet theorem

V is periodic in time → but! no restriction on the strength

Time periodic Hamiltonian: H(t, ~r) = H(t + τ, ~r)

The solution can be written as

Ψ(t, ~r) = e−i E~ tΦ(t, ~r)

Φ(t, ~r) = Φ(t + τ, ~r)

After the Fourier-expansion of a time-periodic function

Ψ(t, ~r) = e−i E~ t
∞∑

q=−∞

e−iqΩ0tψq(~r)
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Floquet scattering matrix

Floquet scattering matrix

The main di�erence to the stationary one: it can change the

energy of incident electrons

Time periodic Hamiltonian → the scattered electron's wave

function is the Floquet function type with components

corresponding to di�erent energies

E energy of the incident e−: Floquet-energy

Floquet scattering matrix: ŜF

Scattering amplitudes SF ,αβ(En,E ): transition between states

of the stationary Hamiltonian
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Floquet scattering matrix

Properties

Unitarity ∑
n

Nr∑
α=1

S∗F ,αβ(En,Em)SF ,αγ(En,E) = δm,0δβ,γ

∑
n

Nr∑
β=1

SF ,γβ(Em,En)S∗F ,αβ(E ,En) = δm,0δα,γ

Micro-reversibility

- the Hamiltonian depends on Np parameters: pi (t)

pi (t) = pi,0 + pi,1 cos(Ω0t + φi )

⇓
SF ,αβ(E ,En;H, {φ}) = SF ,βα(En,E ;−H, {−φ})
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Adiabatic approximation

The frozen scattering matrix

Let Ŝ depend on several time periodic parameters:
Ŝ(t,E) = Ŝ({p(t)};E), Ŝ(t,E) = Ŝ(t + τ,E)

Ŝ(t) does not describe a scattering into a dynamic scatterer, Ŝ(t,E) is the
frozen scattering matrix which stands for the scattering into a frozen state
de�ned by the values of the parameters at time t

Relation to the Floquet scattering matrix if Ω0 → 0 (adiabatic expansion):

$ =
~Ω0

δE
<< 1, ŜF =

∞∑
q=0

(~Ω0)q Ŝ
(q)
F

First order approximation

The initial energy E is di�erent from the �nal one En

Additional term (~Ω0Ân(E)) in order to recover unitarity

~Ω0Ŝ
(1)
F (En,E) =

n~Ω0

2

∂Ŝn(E)

∂E
+ ~Ω0Ân(E)

~Ω0Ŝ
(1)
F (E ,En) =

n~Ω0

2

∂Ŝ−n(E)

∂E
+ ~Ω0Â−n(E)
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The mixed representation

Mixed enery-time representation

Let us introduce Ŝin(t,E) and Ŝout(E , t)

ŜF (En,E) = Ŝin,n(E) ≡
∫ τ

0

dt

τ
e inΩ0t Ŝin(t,E)

ŜF (E ,En) = Ŝout,−n(E) ≡
∫ τ

0

dt

τ
e−inΩ0t Ŝout(E , t)

Ŝin(t,E): scattering amplitudes for incident e−-s with energy E and

leaving the scatterer at time t

Ŝout(E , t): scattering amplitudes for incident e−-s at time t and leaving

the scatterer with energy E

Consistent with the Heisenberg uncertainty

incident energy Em = E + m~Ω0 from the lead β → outgoing energy E in lead α

|Sout,αβ,−m(E)|2
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Properties

Unitarity ∫ τ

0

dt

τ
e inΩ0t Ŝ†in(t,Em)Ŝin(t,E) = δm,0 Î∫ τ

0

dt

τ
e inΩ0t Ŝout(Em, t)Ŝ†out(E , t) = δm,0 Î

Micro-reversibility

Ŝin(t,E ;H, {φ}) = ŜT
out(E ,−t;−H, {−φ})

From the de�nition

Ŝin,n(E) = Ŝout,n(En)

that in time representation reads

Ŝin(t,E) =
∞∑

n=−∞

∫ τ

0

dt′

τ
e inΩ0(t′−t)Ŝout(En, t

′)

Ŝout(E , t) =
∞∑

n=−∞

∫ τ

0

dt′

τ
e−inΩ0(t′−t)Ŝin(t′,En)
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Time-dependent AC current

AC current in terms of Ŝin

Iα(t) =
e

h

∫ ∞
0

dE

Nr∑
β=1

∞∑
n=−∞

{
fβ(E)− fα(En)

}
×
∫ τ

0

dt′

τ
e inΩ0(t′−t)Sin,αβ(t,E)S∗in,αβ(t′,E)

Generalization: exclude the periodicity

nΩ0 → ω

∞∑
n=−∞

→
τ

2π

∫ ∞
−∞

dω

∫ τ

0

dt′e inΩ0t
′
→
∫ ∞
−∞

dt′e iωt
′

⇓

Iα(t) =
e

h

∫
dE

1

2π

∫ ∞
−∞

dω

Nr∑
β=−1

[
fβ(E)− fα(E + ~ω)

]
×
∫ ∞
−∞

dt′e iω(t−t′)Sin,αβ(t,E)S∗in,αβ(t′,E)
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Point-like scattering potential

The point-like potential

One-dimensional Schrödinger equation

i~ ∂Ψ
∂t

=
[
− ~2

2m
∂2

∂x2
+ V (t, x)

]
Ψ

with point-like potential V (t, x),

V (t, x) = δ(x)V (t)
V (t) = V0 + 2V1 cos(ω0t + φ)

The solution

According to the Floquet theorem the solution reads as

Ψ(t, x) = e−i E~ t∑∞
n=−∞ e−inΩ0tψn(x)

Since V (t, x) = 0 except in x = 0, the general solution for a free particle

ψn(x) =

{
a

(−)
n e iknx + b

(−)
n e−iknx , if x < 0

a
(+)
n e iknx + b

(+)
n e−iknx , if x > 0

where kn =
√
2m(E + n~Ω0)/~
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Point-like scattering potential

Boundary conditions

Ψ(t, x = −0) = Ψ(t, x = +0)

∂Ψ(t, x)

∂x

∣∣∣∣
x=+0

−
∂Ψ(t, x)

∂x

∣∣∣∣
x=−0

=
2m

~
V (t)Ψ(t, x = 0)

General solution in terms of incident and scattered waves

ψn(x) = ψ
(in)
n (x) + ψ

(out)
n (x)

where

ψ
(in)
n (x) =

{
a

(−)
n e iknx , x < 0

b
(+)
n e−iknx , x > 0

and

ψ
(out)
n (x) =

{
b

(−)
n e−iknx , x < 0

a
(+)
n e iknx , x > 0

Ψ(t, x) = Ψ(in)(t, x) + Ψ(out)(t, x)
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Wave with unit amplitude - Incident from the left

Wave with unit amplitude

Corresponds to a particle with energy E incident from the left

Ψ
(in)
1 (t, x) = e−i E~ t

{
e ikx , x < 0

0, x > 0

We �nd a
(−)
1,n = δn,0 and b

(+)
1,n = 0

Boundary conditions + collecting coe�cients with ∼ e−i
E+n~Ω0

~ t ⇒ set of linear
equations for n = 0,±1,±2, ...{

δn,0 + b
(−)
1,n = a

(+)
1,n ,

(kn + ip0)a
(+)
1,n = kδn,0 − i(p+1a

(+)
1,n−1 + p−1a

(+)
1,n+1)

where p0 = mV0/~2 and p±1 = mV1e∓iφ/~2 are the Fourier coe�cients for
p(t) = mV (t)/~2
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Wave with unit amplitude - Incident from the left

Floquet scattering matrix elements

S
(1)
F ,11(En,E) = S

(1)
in,11,n(E) =

√
kn
k
b

(−)
1,n

S
(1)
F ,21(En,E) = S

(1)
in,21,n(E) =

√
kn
k
a

(+)
1,n

Approximation

Solve the system of equations with accuracy to the �rst order in the parameter
ε = ~Ω0/E

To the 1st order in ε

kn = k +
nΩ0

v
+O(ε2),

√
kn

kn∓1
= 1±

Ω0

2vk
+O(ε2)

where v = ~k/m is the velocity.

Alexandra Nagy Beyond the adiabatic approximation



Content Reminder Mixed representation AC current Point-like scattering potential Summary

Wave with unit amplitude - Incident from the left

Approximation

After the inverse Fourier transformation1 + S
(1)
in,11(t,E) = S

(1)
in,21(t,E),

(kn + ip(t))S
(1)
in,21(t,E) = k − i

v

∂S
(1)
in,21(t,E)

∂t
+ 1

2vk
dp(t)
dt

S
(1)
in,21(t,E)

Solution via iteration in the terms containing time derivative

Omitting such terms we arrive to

S
(1)
11 (t,E) =

−ip(t)

k + ip(t)
, S

(1)
21 (t,E) =

k

k + ip(t)

First-order solution

After substituting the zero-order solution

S
(1)
in,11(t,E) =

−ip(t)

k + ip(t)
−

1

2v

dp(t)

dt

k − ip(t)

[k + ip(t)]3

S
(1)
in,21(t,E) =

k

k + ip(t)
−

1

2v

dp(t)

dt

k − ip(t)

[k + ip(t)]3
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Wave with unit amplitude - Incident from the left

First-order solution

Based on the zero-order solution one can show

∂2S
(1)
11 (t,E)

∂t∂E
=
∂2S

(1)
21 (t,E)

∂t∂E
=

i

~v
dp(t)

dt

k − ip(t)

[k + ip(t)]3

Therefore, the �rst-order solution can be rewritten as

S
(1)
in,11(t,E) = S

(1)
11 (t,E) +

i~
2

∂2S
(1)
11 (t,E)

∂t∂E

S
(1)
in,21(t,E) = S

(1)
21 (t,E) +

i~
2

∂2S
(1)
21 (t,E)

∂t∂E
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Wave with unit amplitude - Incident from the right

Wave with unit amplitude

Solving the same problem but with a particle incident from the right

Ψ
(in)
2 (t, x) = e−i E~ t

{
0, x < 0

e−ikx , x > 0

We can calculate

S
(1)
22 (t,E) = S

(1)
11 (t,E), S

(1)
12 (t,E) = S

(1)
21 (t,E),

S
(1)
in,22(t,E) = S

(1)
in,11(t,E), S

(1)
in,12(t,E) = S

(1)
in,21(t,E),

Frozen scattering matrix

Thus we get the following relation between the scattering matrix Ŝ
(1)
in (t,E) and

the frozen scattering matrix Ŝ(1)(t,E):

Ŝ
(1)
in (t,E) = Ŝ(1)(t,E) +

i~
2

∂2S(1)(t,E)

∂t∂E

with

Ŝ(1)(t,E) =
1

k + ip(t)

[
−ip(t) k

k −ip(t)

]
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Wave with unit amplitude

Consequences

The solution is derived with the accuracy of order ε

In the case under consideration the parameter ε coincides with
the adiabaticity parameter ε ∼ $

Consequently, the anomalous scattering matrix is identically

zero for a point-like scatterer

Â(1)(t,E ) = 0
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Wave with unit amplitude - Incident from both side

Wave with unit amplitude - incident from both side

Solving the same problem with incident waves from both side

Ψ(in)(t, x) = e−i E~ t

{
a

(−)
0 e ikx , x < 0

b
(+)
0 e−ikx , x > 0

Superposition principle: Ψ(in) = a
(−)
0

Ψ
(in)
1

+ b
(+)
0

Ψ
(in)
2

and Ψ(out) = a
(−)
0

Ψ
(out)
1

+ b
(+)
0

Ψ
(out)
2

Based on earlier results we �nd:

Ψ(out)(t, x) = e−i E~ t
∞∑

n=−∞
e−inΩ0t

{
b

(−)
n e−iknx , x < 0

a
(+)
n e iknx , x > 0

Vector-column representation

Using

Ψ̂
(in)
0 =

[
a

(−)
0

b
(+)
0

]
, Ψ̂

(out)
n =

[
b

(−)
n

a
(+)
n

]

The scattered wave

Ψ̂
(out)
n =

√
k

kn
ŜF (En,E)Ψ̂

(in)
0
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Wave with unit amplitude - Incident from both side

Floquet function type incident waves

The incident wave is Floquet type having side-bands with energies Em

Ψ(in)(t, x) = e−i E~ t
∞∑

m=−∞
e−imΩ0t

{
a

(−)
m e ikmx , x < 0

b
(+)
m e−ikmx , x > 0

With the corresponding vector-columns

Ψ̂
(in)
m =

[
a

(−)
m

b
(+)
m

]

The scattered wave (using the superposition principle)

Ψ̂
(out)
n =

∞∑
m=−∞

√
km

kn
ŜF (En,Em)Ψ̂

(in)
m
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Summary

Review of the Floquet scattering matrix

Floquet scattering matrix in mixed representation

De�nition of the time-dependent AC current

Description of the problem with point-like scattering potential

Alexandra Nagy Beyond the adiabatic approximation



Content Reminder Mixed representation AC current Point-like scattering potential Summary

Thank you for your attention!
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