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Reminder
®000

Floquet theorem

Non-stationary scattering theory - Time periodic potential

ih H(t, )V(t,r)

H(t,7) = Ho(7) + V(t, 7)

y

Floquet theorem

@ V is periodic in time — but! no restriction on the strength
@ Time periodic Hamiltonian: H(t,r) = H(t + 7,1)
@ The solution can be written as

W(t, ) =e 'rio(t, 7)

O(t,7) = (¢t +7,7)

@ After the Fourier-expansion of a time-periodic function

W(e,)=e R YT e N (R)

g=—o0

v
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Reminder
o000

Floquet scattering matrix

Floquet scattering matrix

@ The main difference to the stationary one: it can change the
energy of incident electrons

@ Time periodic Hamiltonian — the scattered electron’s wave
function is the Floquet function type with components
corresponding to different energies

@ E energy of the incident e™: Floquet-energy
o Floquet scattering matrix: Sk

@ Scattering amplitudes Sg o3(En, E): transition between states
of the stationary Hamiltonian
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Reminder
coeo

Floquet scattering matrix

@ Unitarity

Nr

D> " SF as(Ens Em)Sk,an(Eny E) = m,08p,y

n a=1

Ny

S5 St (B En)SF ap(E: Er) = Smodis
n pB=1
@ Micro-reversibility
- the Hamiltonian depends on N, parameters: p;(t)
pi(t) = pio + pi1cos(Qot + ¢i)
I
SF,aB(E, En; H7 {¢}) = SF,,Ba(En, E; _H7 {_¢})
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Reminder
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Adiabatic approximation

The frozen scattering matrix

O Let 5 depend on several time periodic parameters:
S(t,E) =S({p(t)};E), S(t,E)=S(t+T,E)

@ 5(t) does not describe a scattering into a dynamic scatterer, 5(t, E) is the
frozen scattering matrix which stands for the scattering into a frozen state
defined by the values of the parameters at time t

@ Relation to the Floquet scattering matrix if Qo — 0 (adiabatic expansion):

70 s _ N 3(a)
=—<<1, Sp=) (k)57
W SE F ;;%( 0) F

v

First order approximation

@ The initial energy E is different from the final one E,
@ Additional term (hQoA,(E)) in order to recover unitarity

nhiS 05 (E)

100 8Y(E,, E) = 70 An(E
030(En, E) = 52 02 4 0 An(E)
2038 (E, Ey) = %%6557;(5) + 1Ay (E)

y
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Mixed representation
(1)

The mixed representation

Mixed enery-time representation

@ Let us introduce $i(t, E) and Soue(E, t)
& & _ [T dt _nagre
5;:(E,,7 E) = Sin,,,(E) = ?e S;,,(t, E)
0

S (E, En):éout,,n(E)z/ ge*f"ﬂofﬁout(f, )
0

° §,—,,(t, E): scattering amplitudes for incident e™-s with energy E and
leaving the scatterer at time ¢

@ S,.:(E, t): scattering amplitudes for incident e~ -s at time t and leaving
the scatterer with energy E

@ Consistent with the Heisenberg uncertainty

incident energy E;,, = E + mh€)p from the lead 8 — outgoing energy E in lead «
|Saut,aﬁ,7m(E)|2

4
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Mixed representation
oce

Properties

@ Unitarity
Tt o ) )
/0 L e0t3] (¢, Em)Sin(t, E) = mo]

dt A »
/ ’"Qofs (Em7 t)SZut(Ev t) = 5m,0’
0 T

@ Micro-reversibility

§in(t7 E; H7 {¢}) = g(;l;lt(E? —t; _Hv {_¢})

@ From the definition

§r’n,n(E) S §out,n(En)

that in time representation reads

m t E) Z / on(t 7t)so t(EI’Iy t )

n=—oo

Soun(E, t) = Z / I it 03, (| E,)

n=—00

y

Alexandra Nagy Beyond the adiabatic approximation




AC current
°

Time-dependent AC current

AC current in terms of §,-,,

I (t) = /0 dEZ Z (£5(E) — fu(En)}

B=1n=—oc0

.
x [T 15, (0, )57, (¢, E)

@ Generalization: exclude the periodicity

€9 oo
=
S o [ aa] [t [T
= T J—o00

/dE— /_OO dwﬁ_il f3(E) — fo(E + hw)]

></ dtle,’w(t t In aB(t E)Sm a,@(tl7E)

y
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Point-like scattering potential
°0

Point-like scattering potential

The point-like potential

@ One-dimensional Schrédinger equation

in2Y = [ n2 o7 V(t,x)] v

T 2m ox2
with point-like potential V/(t,x),

V(t,x) = 8(x)V(t)
V(t) = Vo + 2V; cos(wot + ¢)

v
The solution

@ According to the Floquet theorem the solution reads as
W(t,x) = e iRt e e— ity (x)
@ Since V/(t,x) =0 except in x = 0, the general solution for a free particle
ap efknx 4 b$,+)e_’kﬂx, if x>0

where k, = \/2m(E + nhS)/k
y
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Point-like scattering potential
oce

Point-like scattering potential

Boundary conditions

V(t,x = —0) = V(t,x = 40)

_ ov(t, x) 2m

AV(t, x)
= —V(t)V =0
s V(1) W(ex = 0)

Ox

x=—0
v

General solution in terms of incident and scattered waves

Pn(x) = D5 (x) + p5™ (x)

where

(;n)( )= as,_)e"knx7 x<0
vy bff)e*""nx, x>0

and

out)(X) b -) _'k”x x <0
a,, +) ’k"X, x>0

W(t,x) = Win(t, x) 4+ wlou (¢ x) J
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Point-like scattering potential
®000

Wave with unit amplitude - Incident from the left

Wave with unit amplitude

@ Corresponds to a particle with energy E incident from the left
. E ikx 0
‘Ug’")(t,x):e_’ﬁt P XX
0, x>0

® We find a{ ) = 6,0 and b{")

1,n =
_;E+nh9g , .
2 = set of linear

@ Boundary conditions + collecting coefficients with ~ e
equations for n =0, +1,4+2, ...

6’70 +b£ n) - a(1-'—17)’
(kn + ipo)al’) = kéno — i(prral’)_; + p_aall) )

where pp = mVy /B2 and pi1 = mVieT? /2 are the Fourier coefficients for
p(t) = mV(t)/h?

) )
h(l.n dr,)
§ ] lll §

Alexandra Nagy Beyond the adiabatic approximation




Point-like scattering potential
oe00

Wave with unit amplitude - Incident from the left

Floquet scattering matrix elements

gl EmE =5

in,11,n

(E) =1/ %51,

S (En E) = S, o(E) = /222

Approximation

@ Solve the system of equations with accuracy to the first order in the parameter
€ =hQ/E

@ To the 15 order in ¢

Q kn Q
B0 1 o), =1+ -2 4 O(&2)

kn=k+ —
" i v knF1 2vk

where v = hk/m is the velocity.

A
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Point-like scattering potential
ocoeo

Wave with unit amplitude - Incident from the left

@ After the inverse Fourier transformation
{1+s,‘nu(r E) = Sy (t,E),
osth) () g
(kn + ip(t))Siagy (8, E) = k — L =mats o L el gl) (4 F)

@ Solution via iteration in the terms containing time derivative

@ Omitting such terms we arrive to

—ip(t)
k +ip(t)’

v
First-order solution

@ After substituting the zero-order solution

" —ip(t) 1 dp(t) k —ip(t)
(b E) = 1 T 2v ar kr (oF

& 1 dp(t) k—ip(t)
k+ip(t) 2v dt [k+ip(t)]?

k

5(1)(t E) = 0

sW(t, E) =

Si(nl,)21 (t E)

y
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Point-like scattering potential
oooe

Wave with unit amplitude - Incident from the left

First-order solution

@ Based on the zero-order solution one can show

S (t,E) _ 9*SH(t,E) _ i dp(t) k—ip(t)
OtOE ~  Ot0E  hv dt [k+ip(t)]?

@ Therefore, the first-order solution can be rewritten as

: )
@ _ ih 8*S;y(t, E)
Sin,ll(ta E) - S11 (tv E) + D) OtOE
- (1)
) e ih %S,/ (t, E)
5in,21(ta E)7521 (t7 E)+ 2 OtOE
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Point-like scattering potential
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Wave with unit amplitude - Incident from the right

Wave with unit amplitude

@ Solving the same problem but with a particle incident from the right

Wi (¢, x) = ekt 0 X <0
e~k x>0

@ We can calculate
s$(t, Ey = s, E), sB(t,E) = sQt, E),
Siha(t.E) = S (£, E),  SU,(t, E) = Sty (t, E),

v

Frozen scattering matrix

@ Thus we get the following relation between the scattering matrix S (t E) and

the frozen scattering matrix $(1)(t, E):

2
S0, £y i 2SO E)
S (£, E) = SW(¢, E) + > 9tdE
with
A 1 —ip(t) k
SO Ey)= —— [ P ) }
&8 =1 +ip(t) | k —ip(t)

V.
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Point-like scattering potential
oce

Wave with unit amplitude

Consequences

@ The solution is derived with the accuracy of order e

@ In the case under consideration the parameter ¢ coincides with
the adiabaticity parameter € ~ @

o Consequently, the anomalous scattering matrix is identically
zero for a point-like scatterer

AM(t, E)=0
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Point-like scattering potential
°0

Wave with unit amplitude - Incident from both side

Wave with unit amplitude - incident from both side

@ Solving the same problem with incident waves from both side

a(()_)eikx, x <0
b((,Jr)e*’k", x>0

\V(in)(t,x) — e—i%t {

@ Superposition principle: WM — (2w 4 p(Iwm and wleut) — o=yt | p(H)ylout)
@ Based on earlier results we find:

€9 (=) o —iknx
iE i b, ‘e="n x<0
\U(OUt) t, x e—lgt e—/nQot n i ’
( ) Z a£1+)elknx7 x>0
v

Vector-column representation

@ Using
. (=) (=)
gl _ |4 glout) _ | b
‘Uom - |:b[(()]+):| ) \Unou - l:a’(n’+):|

A k ~ A~ (
Gleu) = | /kst(En, E){m
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@ The scattered wave




Point-like scattering potential
oce

Wave with unit amplitude - Incident from both side

Floquet function type incident waves

@ The incident wave is Floquet type having side-bands with energies E,,

W(t,x) = e /Rt i e~ imot alp e, x <0
’ o b,(,,+)e_ikmx, x>0

@ With the corresponding vector-columns
Pl — af,f)
m b,(:)

@ The scattered wave (using the superposition principle)

OUt = Z SF(EnyEm)W &

m=—00
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Summary

@ Review of the Floquet scattering matrix

Floquet scattering matrix in mixed representation

Definition of the time-dependent AC current

Description of the problem with point-like scattering potential
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Thank you for your attention!
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