Direct Current Generation part I

Msc seminar

Balassa Gábor

Table of contents

- Steady particle flow
- Direct current in the adiabatic regime
- Direct current in the non-adiabatic regime
- Summary

DC current

- Steady particle flow in the leads connecting a scatterer to the reservoirs.
- Periodic excitation (without bias) -> Dc
 - Quantum pump effect (linear, quadratic, ...)
- Distribution functions characterizes the intensity
- Basic assumption 1: the reservoirs are in equilibrium
 - Fermi distribution

- Direct current = difference of particle flows in the two directions times the electric charge
- Charge conservation must be satisfied
- Basic assumption 2:
 - μ and T are the same at all reservoirs
- But the scattering on the dynamical sample is nonequilibrium

$$I_{\alpha,0} = \frac{e}{h} \int_{0}^{\infty} dE \left\{ f_{\alpha}^{(out)}(E) - f_{\alpha}(E) \right\}.$$

$$f_{\alpha}^{(out)}(E) = \sum_{n=-\infty}^{\infty} \sum_{\beta=1}^{N_r} \left| S_{F,\alpha\beta}(E, E_n) \right|^2 f_{\beta}(E_n).$$

Figure 4.1: The non-equilibrium distribution function, $f_{\alpha}^{(out)}(E)$, for scattered electrons at zero temperature is shown schematically. The step width is $\hbar\Omega_0$. The zero-temperature Fermi function is shown by dashed line.

Adiabatic regime

- Small pumping frequency
- Expanding the difference of the distribution functions
- Zero-order adiabatic approximation of the scattering matrix

$$I_{\alpha,0} = \frac{e\Omega_0}{2\pi} \int_0^\infty dE \left(-\frac{\partial f_0}{\partial E} \right) \sum_{\beta=1}^{N_r} \sum_{n=1}^\infty n \left\{ \left| S_{\alpha\beta,n}(E) \right|^2 - \left| S_{\alpha\beta,-n}(E) \right|^2 \right\}$$

Fourier coeff. of the frozen scattering matrix element

n>0: emission

n<0: absorption

- The current is non-zero if: $\hat{S}(t,E) \neq \hat{S}(-t,E)$.
 - (time reversal symmetry is broken!)
- Dynamical breaking of the symmetry e.g. (two parameters varying with the same frequency but shifted phase)

$$p_1(t) = p_{1,0} + p_{1,1}\cos(\Omega_0 t),$$

$$t \to -t, \iff \varphi \to -\varphi$$

$$p_2(t) = p_{2,0} + p_{2,1}\cos(\Omega_0 t + \varphi).$$

Compact form with iFT:

$$I_{\alpha,0} = -i\frac{e}{2\pi} \int_{0}^{\infty} dE \left(-\frac{\partial f_0(E)}{\partial E}\right) \int_{0}^{\Im} \frac{dt}{\Im} \left(\hat{S}(E,t) \frac{\partial \hat{S}^{\dagger}(E,t)}{\partial t}\right)_{\alpha\alpha}$$

• Charge conservation: $\sum_{I_{\alpha,0}=0}^{I_{N_r}} I_{\alpha,0}=0$.

$$\sum_{\alpha=1}^{N_r} I_{\alpha,0} = 0.$$

- Current at T=0 & finite T
- T=0 limit :

$$-\partial f_0/\partial E = \delta(E - \mu). \qquad I_{\alpha,0} = -i\frac{e}{2\pi} \int_0^{\mathfrak{T}} \frac{dt}{\mathfrak{T}} \left(\hat{S}(t,\mu) \frac{\partial \hat{S}^{\dagger}(t,\mu)}{\partial t}\right)_{\alpha\alpha}.$$

Special case:

Reflection coeff.

• Two leads
• Scattering matrix
$$\hat{S} = e^{i\gamma} \begin{pmatrix} \sqrt{R} e^{-i\theta} & i\sqrt{1-R} e^{-i\phi} \\ i\sqrt{1-R} e^{i\phi} & \sqrt{R} e^{i\theta} \end{pmatrix}$$

- Coefficients are periodic
- Direct Current:

$$I_{0} = \frac{e}{4\pi} \int_{0}^{\infty} dE \left(-\frac{\partial f_{0}(E)}{\partial E} \right) \int_{0}^{\Im} \frac{dt}{\Im} \left\{ R(t) \frac{\partial \theta(t)}{\partial t} + T(t) \frac{\partial \phi(t)}{\partial t} \right\}$$

Phase dependence->QM behaviour

P1, P2 – scattering matrix parameters

L. - closed trajectory

$$d\hat{S}^{\dagger} = \frac{\partial \hat{S}^{\dagger}}{\partial p_{1}} dp_{1} + \frac{\partial \hat{S}^{\dagger}}{\partial p_{2}} dp_{2}. \qquad \qquad I_{\alpha,0} = -i \frac{e\Omega_{0}}{4\pi^{2}} \oint_{\mathcal{L}} (\hat{S} d\hat{S}^{\dagger})_{\alpha\alpha}.$$

• Green's theorem -> $I_{\alpha,0} = \mathcal{F} \frac{e\Omega_0}{2\pi^2} \operatorname{Im} \left(\frac{\partial \hat{S}}{\partial p_1} \frac{\partial \hat{S}^{\dagger}}{\partial p_2} \Big|_{p_i = p_{i,0}} \right)_{\alpha\alpha}$,

Figure 4.2: During one period the point A(t) with coordinates $(p_1(t), p_2(t))$ follows a trajectory \mathcal{L} . \mathcal{F} stands for a surface area. The arrow indicates a movement direction for $\varphi > 0$.

- If the parameters vary with small amplitudes then we can keep the derivatives of the scattering matrix elements constant \rightarrow calculate the derivatives at $p_i = p_{i,0}$.
- If the area is nonzero then the dc current in the adiabatic regime is non-zero.
- Under time reversal the direction of motion of point A changes by its opposite →F->-F
- For some p1,p2 parameters the derivatives can vanish → the dc current vanishes. Frozen scattering matrix → doesn't connect directly to the driving → the stationary characteristic of the scatterer is important!
- Spatially asymetric scatterer is needed (necessary condition).

- Quadratic dependence: $\mathcal{F} = \pi p_{1,1} p_{2,1} \sin(\varphi)$
- The pump effect is nonlinear.
- Phase change → time reversal → current direction is changed.
- Adiabatic regime $\hbar\Omega_0 \ll \delta E_s \rightarrow$ the generated current can be represented as the sum of contributions due to electrons with different energies \rightarrow spectral density of the generated currents $dI_{\alpha}(t,E)/dE$.

$$I_{\alpha,0} = \int_{0}^{\mathfrak{T}} \frac{dt}{\mathfrak{T}} \int_{0}^{\infty} dE \, f_0(E) \, \frac{dI_{\alpha}(t,E)}{dE}$$

• Spectral density function: Diagonal elements

$$\frac{dI_{\alpha}(t,E)}{dE} = \frac{e}{h} P \left\{ \hat{S}, \hat{S}^{\dagger} \right\}_{\alpha\alpha} \equiv i \frac{e}{2\pi} \left(\frac{\partial \hat{S}}{\partial t} \frac{\partial \hat{S}^{\dagger}}{\partial E} - \frac{\partial \hat{S}}{\partial E} \frac{\partial \hat{S}^{\dagger}}{\partial t} \right)_{\alpha\alpha}$$

• Conservation law: $\sum_{\alpha=1}^{N_r} \frac{dI_{\alpha}}{dE} = \frac{e}{h} \sum_{\alpha=1}^{N_r} P\left\{\hat{S}, \hat{S}^{\dagger}\right\}_{\alpha\alpha} = 0.$

- Problem:
 - No DC if the phase difference is zero.
 - No DC if only one parameter varies in time.
- But the dynamical scatterer can generate quadratic, ... dc as well: $I_{\alpha,0} \sim \Omega_0^2 \leftarrow$ non adiabatic

• Expand further \rightarrow $I_{\alpha,0} = \frac{e}{2\pi} \int_{0}^{\infty} dE \left(-\frac{\partial f_0}{\partial E}\right) \int_{0}^{3} \frac{dt}{\Im} \operatorname{Im} \left\{\hat{S} \frac{\partial \hat{S}^{\dagger}}{\partial t} + 2\hbar\Omega_0 \hat{A} \frac{\partial \hat{S}^{\dagger}}{\partial t}\right\}_{\alpha\alpha}$ Linear

• If $S(t)=S(-t) \rightarrow Iinear term vanishes.$

$$I_{\alpha,0}^{(2)} = \frac{e\hbar\Omega_0}{\pi} \int_0^\infty dE \left(-\frac{\partial f_0}{\partial E}\right) \int_0^{\Im} \frac{dt}{\Im} \operatorname{Im} \left\{\hat{A} \frac{\partial \hat{S}^{\dagger}}{\partial t}\right\}_{\alpha\alpha}.$$

• Conservation law: $\int_{0}^{s} \frac{dt}{\Im} \operatorname{Im} \operatorname{Tr} \left(\hat{A}(t, E) \frac{\partial \hat{S}^{\dagger}(t, E)}{\partial t} \right) = 0.$

Summary

- DC formation without any bias.
- Equilibrium before scattering.
- Dynamical and stationary conditions to the scatterer:
 - Broken time reversal symmetry
 - Spatial asymmetry
- Linear and quadratic pumping.