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DC current

 Steady particle flow in the leads connecting a scatterer
to the reservoirs.

* Periodic excitation (without bias) -> Dc

* Quantum pump effect (linear, quadratic, ...)
 Distribution functions characterizes the intensity
* Basic assumption 1: the reservoirs are in equilibrium

 Fermi distribution



* Direct current = difference of particle flows in the two
directions times the electric charge

* Charge conservation must be satisfied
* Basic assumption 2:

* uand T are the same at all reservoirs

* But the scattering on the dynamical sample is non-
equilibrium
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Figure 4.1: The non-equilibrium distribution function, f““?(E), for
scattered electrons at zero temperature 1s shown schematically. The step

width 1s 71€Q),. The zero-temperature Fermi function 1s shown by dashed
line.




Adiabatic regime

* Small pumping frequency
* Expanding the difference of the distribution functions

e Zero-order adiabatic approximation of the scattering
matrix
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* The current is non-zero if: S(tE)+ S(-1.E).
* (time reversal symmetry is broken!)

* Dynamical breaking of the symmetry e.g. (two
parameters varying with the same frequency but
shifted phase)
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e Compact form with iFT:

* Charge conservation: S Lo=0.

e Current at T=0 & finite T
e T=0 limit :
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° Special case: /Leﬂect’mn coeff.
* Two Iea?ds | Fat TR
* Scattering matrix S=¢
iV1-Re® VRe"

* Coefficients are periodic . ,

* Direct Current: I - E ( ﬁﬁf) dt {R{)m I{)afzin}
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Phase dependence-=QM behaviour
P1, P2 — scattering matrix parameters

L.- closed trajectory
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Figure 4.2: During one period the point A(f) with coordinates
(p1(t), pa(r)) follows a trajectory L. F stands for a surface area. The
arrow indicates a movement direction for ¢ > 0.



* If the parameters vary with small amplitudes then we can keep the
derivatives of the scattering matrix elements constant = calculate
the derivatives at p; = pio.

* If the area is nonzero then the dc current in the adiabatic regime is
non-zero.

* Under time reversal the direction of motion of point A changes by its
opposite 2> F->-F

* For some pl,p2 parameters the derivatives can vanish = the dc
current vanishes. Frozen scattering matrix—=>doesn’t connect directly
to the driving—=2>the stationary characteristic of the scatterer is
important!

e Spatially asymetric scatterer is needed (necessary condition).



* Quadratic dependence: F = 7 pypy;sin()
* The pump effect is nonlinear.

* Phase change—>time reversal->current direction is
changed.

* Adiabatic regime 7nQ, < ¢E. = the generated current
can be represented as the sum of contributions due to
electrons with different energies = spectral density of
the generated currents dI,(i.E)/dE .
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e Spectral density function: biagonal etements
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* Conservation law: Y %= 3" r(s.57), =0,
a=1 a=1

* Problem:
* No DC if the phase difference is zero.
* No DC if only one parameter varies in time.

* But the dynamical scatterer can generate quadratic, ...
dcaswell: 1,,~02¢< non adiabatic



* Expand further 2 1.
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o If S(t)=S(-t) = linear term vanishes.
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Ssummary

* DC formation without any bias.
* Equilibrium before scattering.

* Dynamical and stationary conditions to the scatterer:
* Broken time reversal symmetry

* Spatial asymmetry

* Linear and quadratic pumping.



